OPTI^{*}CCA-TS2 Analysator

Gebrauchsanweisung

ÄNDERUNGSVERZEICHNIS

(Bitte alle Änderungen an diesem Handbuch hier eintragen)

Version	Freigabedatum	Geprüft von	Beschreibung
A	März 2013		PCR120183
В	NOV 2013		PCR130137 CO1014
С	JUNI 2018		CO2069
D	APRIL 2019		CO2699

Eigentumsrechtliche Hinweise

Änderungen vorbehalten. Die in Beispielen verwendeten Firmen, Namen und Daten sind, wenn nicht anders angegeben, rein fiktiv. Kein Teil dieser Veröffentlichung darf in irgendeiner Form ohne ausdrückliche schriftliche Genehmigung von OPTI Medical Systems reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden. Patente und Patentanmeldungen, Warenzeichen, Urheberrechte oder andere geistige und industrielle Eigentumsrechte, die dieses Dokument oder dessen Inhalt betreffen, gehören OPTI Medical Systems, Inc. Die Bereitstellung dieses Dokuments gewährt keinerlei Anspruch auf diese Eigentumsrechte, es sei denn dies ist ausdrücklich in einem schriftlichen Lizenzvertrag mit OPTI Medical Systems festgelegt.

© 2019 OPTI Medical Systems, Inc. Alle Rechte vorbehalten.

* OPTI, das OPTI Medical Firmenzeichen und ComfortSampler sind Warenzeichen oder eingetragene Warenzeichen von OPTI Medical Systems, Inc. in den USA und anderen Ländern. Andere Warenzeichen sind das Eigentum der jeweiligen Besitzer.

Made in U.S.A.

OPTI Medical Systems, Inc. 235 Hembree Park Drive Roswell, GA 30076 USA www.optimedical.com

EMERGO EUROPE Prinsessegracht 20 2514 AP The Hague The Netherlands

Art.Nr. PD7302 REV D

- Wichtige Informationen -

Diese **Gebrauchsanweisung** enhält wichtige **Warn**- und **Sicherheitshinweise**, deren Beachtung unerlässlich für die fehlerfreie Funktion des Gerätes ist.

Das Gerät ist nur für einen ganz bestimmten, in der Anleitung beschriebenen, Einsatzzweck vorgesehen. Im folgenden werden die wichtigsten, für den Einsatz und Betrieb des Gerätes erforderlichen Voraussetzungen und Sicherheitsmaßnahmen erläutert, damit das Gerät die spezifizierte Leistung erbringen kann. Anwendungen außerhalb des beschriebenen Einsatzzweckes und ohne Beachtung der erforderlichen Voraussetzungen und Sicherheitsmaßnahmen erfolgen auf eigene Gefahr.

Das Gerät sollte nur durch Personal betrieben werden, das aufgrund seiner Qualifikationen in der Lage ist, die beim Betrieb des Gerätes notwendigen Sicherheitsmaßnahmen einzuhalten. Einstell- und Wartungsarbeiten am geöffneten Gerät unter Spannung dürfen nur von dem dafür ausgebildeten Fachpersonal durchgeführt werden, das sich der damit verbundenen Gefahr bewusst ist.

Die Reparatur des Gerätes sollte nur im Lieferwerk oder durch das dafür ausgebildete Fachpersonal durchgeführt werden.

Um auf Dauer die Leistungsfähigkeit und Messgenauigkeit des Gerätes sicherzustellen, wird die ausschließliche Verwendung von OPTI Medical Verbrauchsmaterialien und Ersatzteilen empfohlen. Diese sind speziell für die Verwendung in diesem Gerät hergestellt und entsprechen den höchsten Qualitätsanforderungen.

Beim Betrieb des Gerätes mit Reagenzien, deren Zusammensetzung nicht denjenigen der OPTI Medical Originalreagenzien entspricht, kann vor allem die Messgenauigkeit beeinträchtigt werden.

Da die Messergebnisse des Gerätes nicht nur von der korrekten Eigenfunktion abhängen, sondern auch von einer Reihe von Randbedingungen (z.B.: Präanalytik), sollten die vom Gerät gelieferten Resultate einer Begutachtung durch einen Fachmann unterzogen werden, bevor auf den gelieferten Messwert bezogene weiterführende Maßnahmen getroffen werden.

Messergebnisse, die auf dem Messprotokoll als außerhalb der zulässigen Bereiche markiert werden, sollten unter keinen Umständen als Behandlungsgrundlage dienen.

- Wichtige Informationen -

- Sicherheitshinweise -

- Überspannungskategorie II bei Anschluss an einen Zweigschaltkreis.
- Das Gerät wurde geprüft und liegt innerhalb der Grenzbereiche eines Digitalgeräts der Klasse B (nach Teil 15 der FCC-Vorschriften – U.S.A.).

Vorsicht:

- Das Gerät ist als gewöhnliches Gerät ausgeführt (geschlossenes Gerät ohne Schutz gegen Eindringen von Wasser).
- Das Gerät darf nicht in explosionsfähiger Atmosphäre oder in der Umgebung von explosionsfähigen Gemischen von Anästhesiemitteln mit Sauerstoff oder Lachgas betrieben werden.
- Das Gerät ist für Dauerbetrieb geeignet.
- Der Netzstecker darf nur in eine Steckdose mit Schutzkontakt eingesteckt werden. Die Schutzwirkung darf nicht durch eine Verlängerungsschnur ohne Schutzleiter aufgehoben werden.
- Das Netzkabel sollte die folgenden Mindeststandards erfüllen: 3-polig mit Schukostecker, abgeschirmt, 18 AWG, 300V.
- Jegliche Unterbrechung des Schutzleiters innerhalb oder außerhalb des Gerätes oder Lösen des Schutzleiteranschlusses kann dazu führen, dass das Gerät gefahrbringend wird. Absichtliche Unterbrechung ist nicht zulässig.
- Es ist sicherzustellen, dass nur Sicherungen vom angegebenen Typ und der angegeben Nennstromstärke als Ersatz verwendet werden. Die Verwendung geflickter Sicherungen oder Kurzschließen des Sicherungschalters ist unzulässig.

Dieses Gerät ist ein Klasse 1 Laserprodukt gemäß IEC 60825-1.

Die LEDs sind gemäß IEC/ EN 62471 als RISIKOGRUPPE 0 (freie Gruppe) klassifiziert.

Maximale Leistung:

670 nm (LED): max. 40 Mikrowatt / 400ms 780 nm (Laser): max. 40 Mikrowatt / 400ms 850 nm (Laser): max. 40 Mikrowatt / 400ms

Vorsicht: Nichtbeachtung der hier beschriebenen Einstell- und Servicevorschriften kann zu gefährlichen Strahlungsbelastungen führen.

Akzeptanzbedingungen:

Knopfzellenbatterie auf der Hauptplatine:

- Das Überladen, Kurzschließen, Rückwärtsladen, Beschädigen oder Verbrennen der Batteriezellen ist zu vermeiden, da dies die folgenden Gefährdungen zur Folge haben kann: Freisetzung von Schadstoffen, Freisetzung von Wasserstoff- bzw. Sauerstoffgas, Anstieg der Oberflächentemperatur.
- Ausgelaufene oder beschädigte Batteriezellen müssen sofort unter Anwendung von Schutzhandschuhen mit identischen neuen Zellen vom selben Hersteller ersetzt werden. Falls eine zu ersetzende Batteriezelle mit anderen Zellen in Reihe geschaltet werden soll, wird empfohlen, die anderen Zellen gleichzeitig zu ersetzen.
- Eine falsche Verpolung beim Einbau der Batteriezelle in das Endprodukt ist zu vermeiden.

- Sicherheitshinweise -

- Sicherheitstechnische Hinweise -

Empfehlungen zur Handhabung und Lagerung der Lithium-Ionen Batterie:

- a) Sekundärzellen oder Batterien dürfen nicht zerlegt, geöffnet oder zerstört werden.
- b) Zellen oder Batterien von Hitze, Feuer und direktem Sonnenlicht fernhalten.
- c) Zellen oder Batterien nicht kurzschließen. Nicht mit metallischen oder anderen leitfähigen Gegenständen in Kontakt bringen (Kurzschlussgefahr).
- d) Zellen oder Batterien bis zum Gebrauch in der Originalverpackung aufbewahren.
- e) Zellen oder Batterien keinen großen mechanischen Belastungen aussetzen.
- f) Bei Auslaufen einer Zelle Haut- und Augenkontakt vermeiden. Falls Haut- und Augenkontakt mit Batterieflüssigkeit erfolgt, die betroffenen Stellen mit großen Mengen Wasser spülen und ärztliche Hilfe suchen.
- g) Nur Ladegeräte benutzen, die für den Gebrauch mit diesen Batterien bestimmt sind.
- h) Beim Einsetzen der Zellen oder Batterien in das Gerät die Polarität beachten.
- i) Nur Zellen oder Batterien benutzen, die für die Anwendung in diesem Gerät bestimmt sind.
- j) Innerhalb eines Gerätes immer nur gleichartige Zellen oder Batterien des selben Herstellers, des selben Typs und der selben Kapazität und Größe verwenden.
- k) Zellen oder Batterien von Kindern fernhalten.
- I) Bei Verschlucken einer Zelle oder Batterie sofort ärztliche Hilfe suchen.
- m) Nur die für das Gerät bestimmten Zellen oder Batterien verwenden.
- n) Zellen und Batterien sauber und trocken halten.
- o) Bei Verschmutzung Batterieklemmen mit einem sauberen, trockenen Tuch säubern.
- p) Sekundärzellen und Batterien müssen vor Gebrauch aufgeladen werden. Verwenden Sie nur Ladegeräte, die für diese Batterien bestimmt sind, und folgen Sie den Anweisungen des Herstellers zum Aufladen der Batterien.
- q) Batterie nicht zu lange laden lassen, wenn diese nicht in Gebrauch ist.
- r) Nach einer längeren Lagerung kann ein mehrmaliges Laden und Entladen der Batterien zum Erreichen der optimalen Leistung erforderlich sein.
- s) Sekundärzellen und Batterien erbringen die beste Leistung bei normaler Raumtemperatur (20 °C ± 5 °C).
- t) Bewahren Sie die Original-Produktinformationen zum Nachschlagen auf.
- u) Verwenden Sie Zellen und Batterien nur für den dafür bestimmten Anwendungszweck.
- v) Wenn möglich, Batterien bei Nichtgebrauch aus dem Gerät entfernen.
- w) Zellen und Batterien fachgerecht entsorgen.

- Sicherheitstechnische Hinweise -

Symbole

Die im Nachfolgenden beschriebenen Symbole werden auf den Verpackungen von OPTI* CCA-TS2 Produkten verwendet.

Symbol	Bedeutung
Â	Achtung – Weitere Anweisungen siehe Gebrauchsanweisung oder Serviceanleitung. Dieses Symbol befindet sich auf der Innenseite des Gerätes und auf Produktverpackungen.
EXP	Verfallsdatum / Verwendbar bis – Das Produkt muss vor dem rechts neben diesem Symbol angegebenen Verfallsdatum verwendet werden.
LOT	Chargenbezeichnung – Die Chargennummer des Herstellers befindet sich rechts neben diesem Symbol.
$(\underline{\mathbb{X}})$	Nicht wiederverwendbar – Produkte mit diesem Symbol können nur für den in der Produktanleitung spefizierten Zeitraum verwendet werden.
PFTG	Plastik-Recycling – Die Verpackung der mit diesem Symbol gekenn- zeichneten Produkte enthält Polyethylenterephthalat-Glykol und wird als Recycling-Material angesehen.
	WEEE-Symbol - Dieses Produkt enspricht den Anforderungen der WEEE-Richtlinie 2002/96/EC zur Handhabung, Sammlung und Wiederaufbereitung von Elektro- und Elektronikgeräten.

Symbol	Bedeutung
X	Biologischer Sondermüll – Bei Produkten bzw. Komponenten mit diesem Symbol besteht nach dem Gebrauch eine mögliche Infektionsgefahr. Entsprechende Vorsichtmaßnahmen beachten.
°C	Lagerung bei – Produkte bzw. Komponenten mit diesem Zeichen müssen innerhalb des angegebenen Temperaturbereiches gelagert werden.
IVD	In vitro Diagnosticum
CE	Dieses Produkt entspricht den Anforderungen der Richtlinie über In Vitro Diagnostika 98/79/EG.
REF	Artikelnummer
Í	Bitte Packungsbeilage beachten! / Gebrauchsanweisung des Gerätes beachten!
	Hergestellt von
EC REP	Autorisierter EU-Repräsentant

VORWORT

Willkommen

Der OPTI* CCA-TS2 Analysator ist ein leistungsfähiges Instrument, das darauf ausgelegt ist, Ihnen schnell, präzise und effizient bei der Durchführung von allgemeinen pH-, PCO_2 -, PO_2 -, Na⁺-, K⁺-, Ca⁺⁺-, Cl⁻-, Glu-, BUN/Urea-, Lac-¹, tHb- und SO₂-Analysen, je nach Kassettenkonfiguration, in Ihrem Labor behilflich zu sein.

Die vorliegende Gebrauchsanweisung enthält Anweisungen für den Aufbau des Analysators und die Durchführung von Probenanalysen. Nachdem sich der Benutzer mit dem Gerät vertraut gemacht hat, kann die Bedienungsanleitung als Nachschlagdokument für alltägliche Routinen und als Anleitung zur Wartung und Fehlersuche benutzt werden.

Zu dieser Anleitung

Falls Ihr Analysator noch nicht in Betrieb genommen ist, sollten Sie mit Kapitel 1 und 2 beginnen. Systemeinstellungen und Qualitätskontrolle werden in Kapitel 3 und 4 behandelt. Informationen zur Bedienung des Gerätes finden Sie in Kapitel 5, Datenmanagement in Kapitel 6. Detaillierte Anweisungen zu Wartung und Service des Analysators finden Sie in Kapitel 7 und 8, Bedienungsgrundlagen in Kapitel 9.

¹ B-Lac-Kassetten sind zur Zeit in Deutschland nicht erhältlich.

INHALTSVERZEICHNIS

	oole	VII
Vorwe	ort	IX
Willko	ommen	IX
Zu die	ser Anleitung	IX
1 EI	NLEITUNG	1-1
1.1	Anwendungsbereich	1-1
1.2	Messprinzipien	1-1
1.3	Lieferinhalt	1-2
1.4	Gerätekomponenten	1-3
1.5	Verbrauchsmaterialien	1-8
2 IN	IBETRIEBNAHME	2-1
2.1	Wichtige Sicherheitshinweise	2-1
2.2	Wahl des Standorts	2-1
2.3	Inbetriebnahme	2-2
3 S'	YSTEMEINSTELLUNGEN	3-1
3.1	Zeit- und Datumseinstellung	
3.1 3.2	Zeit- und Datumseinstellung	3-1 3-2
3.1 3.2 3.2.1	Zeit- und Datumseinstellung Einstellungen QC-Einstellungen.	3-1 3-2
3.1 3.2 3.2.1	Zeit- und Datumseinstellung Einstellungen QC-Einstellungen 3.2.1.1 Kontrollmaterialien einrichten	3-1 3-2 3-3 3-3 3-3
 3.1 3.2 3.2.1 3.2.2 	Zeit- und Datumseinstellung Einstellungen QC-Einstellungen 3.2.1.1 Kontrollmaterialien einrichten 3.2.1.2 QC-Sperre einstellen Patienteneinstellungen	3-1 3-2 3-3 3-3 3-3 3-3 3-5 3-8
 3.1 3.2 3.2.1 3.2.2 	Zeit- und Datumseinstellung Einstellungen QC-Einstellungen 3.2.1.1 Kontrollmaterialien einrichten 3.2.1.2 QC-Sperre einstellen Patienteneinstellungen 3.2.2.1 Patienteninformationen einrichten	3-1 3-2 3-3 3-3 3-3 3-5 3-5 3-8 3-8 3-8
 3.1 3.2 3.2.1 3.2.2 	Zeit- und Datumseinstellung Einstellungen QC-Einstellungen 3.2.1.1 Kontrollmaterialien einrichten 3.2.1.2 QC-Sperre einstellen Patienteneinstellungen 3.2.2.1 Patienteninformationen einrichten 3.2.2.2 Ergebnisanzeige deaktivieren	3-1 3-2 3-3 3-3 3-3 3-5 3-8 3-8 3-8 3-8 3-11
 3.1 3.2 3.2.1 3.2.2 	Zeit- und Datumseinstellung Einstellungen QC-Einstellungen 3.2.1.1 Kontrollmaterialien einrichten 3.2.1.2 QC-Sperre einstellen Patienteneinstellungen 3.2.2.1 Patienteninformationen einrichten 3.2.2.2 Ergebnisanzeige deaktivieren 3.2.2.3 Testprofile einrichten 3.2.2.4 Pechenwerte einrichten	3-1 3-2 3-3 3-3 3-3 3-5 3-8 3-8 3-8 3-11 3-12 3-14
 3.1 3.2 3.2.1 3.2.2 	Zeit- und Datumseinstellung Einstellungen QC-Einstellungen 3.2.1.1 Kontrollmaterialien einrichten 3.2.1.2 QC-Sperre einstellen Patienteneinstellungen 3.2.2.1 Patienteninformationen einrichten 3.2.2.2 Ergebnisanzeige deaktivieren 3.2.2.3 Testprofile einrichten 3.2.2.4 Rechenwerte einrichten 3.2.2.5 Eingabe des tHb-Werts	3-1 3-2 3-3 3-3 3-5 3-8 3-8 3-8 3-11 3-12 3-14 3-15
 3.1 3.2 3.2.1 3.2.2 	Zeit- und Datumseinstellung Einstellungen QC-Einstellungen 3.2.1.1 Kontrollmaterialien einrichten 3.2.1.2 QC-Sperre einstellen Patienteneinstellungen 3.2.2.1 Patienteninformationen einrichten 3.2.2.2 Ergebnisanzeige deaktivieren 3.2.2.3 Testprofile einrichten 3.2.2.4 Rechenwerte einrichten 3.2.2.5 Eingabe des tHb-Werts 3.2.2.6 Messwertbereiche einstellen	3-1 3-2 3-3 3-3 3-3 3-5 3-8 3-8 3-8 3-11 3-12 3-14 3-15 3-16
 3.1 3.2 3.2.1 3.2.2 	Zeit- und Datumseinstellung GC-Einstellungen 3.2.1.1 Kontrollmaterialien einrichten 3.2.1.2 QC-Sperre einstellen Patienteneinstellungen 3.2.2.1 Patienteninformationen einrichten 3.2.2.2 Ergebnisanzeige deaktivieren 3.2.2.3 Testprofile einrichten 3.2.2.4 Rechenwerte einrichten 3.2.2.5 Eingabe des tHb-Werts 3.2.2.6 Messwertbereiche einstellen 3.2.2.7 Rechenwertbereiche einstellen	3-1 3-2 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-8 3-8 3-8 3-8 3-8 3-8 3-11 3-12 3-14 3-15 3-16 3-18
 3.1 3.2 3.2.1 3.2.2 	Zeit- und Datumseinstellung QC-Einstellungen 3.2.1.1 Kontrollmaterialien einrichten 3.2.1.2 QC-Sperre einstellen Patienteneinstellungen 3.2.2.1 Patienteninformationen einrichten 3.2.2.2 Ergebnisanzeige deaktivieren 3.2.2.3 Testprofile einrichten 3.2.2.4 Rechenwerte einrichten 3.2.2.5 Eingabe des tHb-Werts 3.2.2.6 Messwertbereiche einstellen 3.2.2.7 Rechenwertbereiche einstellen 3.2.2.8 Probenbehälter wählen	3-1 3-2 3-3 3-3 3-3 3-3 3-5 3-8 3-8 3-8 3-8 3-11 3-12 3-14 3-15 3-16 3-18 3-20
 3.1 3.2 3.2.2 3.2.2 	Zeit- und Datumseinstellung QC-Einstellungen 3.2.1.1 Kontrollmaterialien einrichten 3.2.1.2 QC-Sperre einstellen Patienteneinstellungen 3.2.2.1 Patienteninformationen einrichten 3.2.2.2 Ergebnisanzeige deaktivieren 3.2.2.3 Testprofile einrichten 3.2.2.4 Rechenwerte einrichten 3.2.2.5 Eingabe des tHb-Werts 3.2.2.6 Messwertbereiche einstellen 3.2.2.7 Rechenwertbereiche einstellen 3.2.2.8 Probenbehälter wählen 3.2.2.9 Korrelationsfaktoren einstellen	3-1 3-2 3-3 3-3 3-3 3-5 3-8 3-8 3-8 3-11 3-12 3-14 3-14 3-15 3-16 3-18 3-20 3-21
 3.1 3.2 3.2.2 3.2.2 3.2.3 	Zeit- und Datumseinstellung QC-Einstellungen 3.2.1.1 Kontrollmaterialien einrichten 3.2.1.2 QC-Sperre einstellen Patienteneinstellungen 3.2.2.1 Patienteninformationen einrichten 3.2.2.2 Ergebnisanzeige deaktivieren 3.2.2.3 Testprofile einrichten 3.2.2.4 Rechenwerte einrichten 3.2.2.5 Eingabe des tHb-Werts 3.2.2.6 Messwertbereiche einstellen 3.2.2.7 Rechenwertbereiche einstellen 3.2.2.8 Probenbehälter wählen 3.2.2.9 Korrelationsfaktoren einstellen 3.2.2.9 Korrelationsfaktoren einstellen 3.2.3 1 Sicherbeitseinstellungen	3-1 3-2 3-3 3-3 3-3 3-5 3-8 3-8 3-8 3-8 3-11 3-12 3-14 3-15 3-16 3-18 3-20 3-21 3-22 3-22 3-22 3-22 3-22 3-22
 3.1 3.2 3.2.2 3.2.2 3.2.3 	Zeit- und Datumseinstellung GC-Einstellungen 3.2.1.1 Kontrollmaterialien einrichten 3.2.1.2 QC-Sperre einstellen Patienteneinstellungen 3.2.2.1 Patienteninformationen einrichten 3.2.2.2 Ergebnisanzeige deaktivieren 3.2.2.3 Testprofile einrichten 3.2.2.4 Rechenwerte einrichten 3.2.2.5 Eingabe des tHb-Werts 3.2.2.6 Messwertbereiche einstellen 3.2.2.7 Rechenwertbereiche einstellen 3.2.2.8 Probenbehälter wählen 3.2.2.9 Korrelationsfaktoren einstellen 3.2.3.1 Sicherheitseinstellungen 3.2.3.1 Sicherheitseinstellungen	3-1 3-2 3-3 3-3 3-3 3-5 3-8 3-8 3-11 3-12 3-14 3-12 3-14 3-15 3-16 3-16 3-20 3-21 3-22 3-22 3-22 3-28

3.2.4	Verschiedene Systemeinstellungen	3-30 3-30 3-32 3-34 3-35 3-35 3-38 3-41 3-43
4 K	ALIBRIERUNG UND QUALITÄTSKONTROLLE	4-1
4.1	Kalibrierung	4-1
4.2	QC-Übersicht	4-2
4.3	Externe Qualitätskontrolle (Ringversuche)	4-2
4.4	Kalibrierprüfung	4-3
4 5	Empfehlungen zur Qualitätskontrolle	4-3
4.5.1	Messung einer Standardreferenzkassette (SRC)	
4.5.2	Messung einer QC-Probe	
	4.5.2.1 QC-Messung (OPTI CHECK, OPTI CHECK PLUS)	4-9
5 P	ROBENHANDHABUNG UND MESSUNG	5-1
5.1	Probenentnahme und Handhabung	5-1
511	Sicherheitsvorkehrungen	
0.1.1	Drohononfordorungon	5 1
5.1.2	Flobenanorderungen	
5.1.2 5.1.3	Gerinnungshemmer und Probenentnahmegefäße	
5.1.2 5.1.3 5.1.4	Gerinnungshemmer und Probenentnahmegefäße	
5.1.2 5.1.3 5.1.4 5.1.5 5.1.6	Gerinnungshemmer und Probenentnahmegefäße Spritzen Kapillarröhrchen	
5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7	Gerinnungshemmer und Probenentnahmegefäße Spritzen Kapillarröhrchen OPTI Medical ComfortSampler* Probenröhrchen	5-1 5-1 5-2 5-2 5-2 5-2 5-2 5-3
5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8	Gerinnungshemmer und Probenentnahmegefäße Spritzen Kapillarröhrchen OPTI Medical ComfortSampler* Probenröhrchen Handhabung und Lagerung der Proben	5-1 5-2 5-2 5-2 5-2 5-2 5-3 5-3
5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9	Gerinnungshemmer und Probenentnahmegefäße Spritzen Kapillarröhrchen OPTI Medical ComfortSampler* Probenröhrchen Handhabung und Lagerung der Proben Testbedingungen	5-1 5-1 5-2 5-2 5-2 5-2 5-3 5-3 5-3 5-3 5-4
5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2	Gerinnungshemmer und Probenentnahmegefäße	5-1 5-2 5-2 5-2 5-2 5-2 5-3 5-3 5-3 5-3 5-4 5-4
5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2 5.2.1	Gerinnungshemmer und Probenentnahmegefäße Spritzen Kapillarröhrchen OPTI Medical ComfortSampler* Probenröhrchen Handhabung und Lagerung der Proben Testbedingungen Probenvorbereitung Vollblutproben	5-1 5-1 5-2 5-2 5-2 5-2 5-3 5-3 5-3 5-3 5-4 5-4
5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2 5.2.1 5.2	Gerinnungshemmer und Probenentnahmegefäße Spritzen Kapillarröhrchen OPTI Medical ComfortSampler* Probenröhrchen Handhabung und Lagerung der Proben Testbedingungen Probenvorbereitung Vollblutproben	5-1 5-1 5-2 5-2 5-2 5-3 5-3 5-3 5-3 5-4 5-4 5-4 5-4 5-4
5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2 5.2.1 5.2 .1	Gerinnungshemmer und Probenentnahmegefäße Spritzen Kapillarröhrchen OPTI Medical ComfortSampler* Probenröhrchen Handhabung und Lagerung der Proben Testbedingungen Probenvorbereitung Vollblutproben	5-1 5-1 5-2 5-2 5-2 5-3 5-3 5-3 5-3 5-3 5-3 5-4 5-4 5-4 5-4 5-4 5-4
5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2 5.2.1 5.3	Gerinnungshemmer und Probenentnahmegefäße Spritzen Kapillarröhrchen OPTI Medical ComfortSampler* Probenröhrchen Handhabung und Lagerung der Proben Testbedingungen Vollblutproben Probenanalyse	5-1 5-1 5-2 5-2 5-2 5-3 5-3 5-3 5-3 5-3 5-4 5-4 5-4 5-4 5-4 5-4 5-4 5-4
5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2 5.2.1 5.2.1 5.3 6 D. 6.1	Gerinnungshemmer und Probenentnahmegefäße Spritzen Kapillarröhrchen OPTI Medical ComfortSampler* Probenröhrchen Handhabung und Lagerung der Proben Testbedingungen Vollblutproben Probenanalyse	5-1 5-1 5-2 5-2 5-2 5-3 5-3 5-3 5-3 5-3 5-4 5-4 5-4 5-4 5-4 5-4 5-5
5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2 5.2.1 5.3 6 D 6.1 6.1.1	Gerinnungshemmer und Probenentnahmegefäße Spritzen Kapillarröhrchen OPTI Medical ComfortSampler* Probenröhrchen Handhabung und Lagerung der Proben Testbedingungen Vollblutproben Probenanalyse ATENMANAGEMENT Mess- und Statistikprotokolle drucken Patienten-Messprotokolle	5-1 5-1 5-2 5-2 5-2 5-3 5-3 5-3 5-3 5-3 5-4 5-4 5-4 5-4 5-4 5-4 5-4 5-4 5-4 5-5
5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2 5.2.1 5.3 6 D 6.1 6.1.1 6.1.2 6.1.2	Gerinnungshemmer und Probenentnahmegefäße Spritzen	5-1 5-1 5-2 5-2 5-2 5-3 5-3 5-3 5-3 5-3 5-4 5-4 5-4 5-4 5-4 5-4 5-5 6-1 6-1 6-3 6-4
5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.2 5.2.1 5.3 6 D 6.1 6.1.1 6.1.2 6.1.3 6.1.4	Gerinnungshemmer und Probenentnahmegefäße	5-1 5-1 5-2 5-2 5-2 5-3 5-3 5-3 5-3 5-3 5-4 5-4 5-4 5-4 5-4 5-4 5-4 5-4 5-5 6-1 6-1 6-3 6-4 6-5

6.2 6.2.1	Diagnostikprotokolle drucken	6-7
6.2.2	SRC-Diagnostikprotokolle	6-8
6.2.3	QC-Diagnostikprotokolle	6-9
6.2.4	Fehlerprotokolle	6-10
6.3	Verschiedene Protokolle	6-11
6.3.1	Wartungsprotokolle	6-11
6.4	Daten importieren und exportieren	6-12
6.4.1	Messergebnisse exportieren	
6.4.2	Konfigurationsdaten importieren/exportieren	
6.4.3	Datenbank exportieren	
7 W	ARTUNG	7-1
7.1	Tägliche Wartung	7-1
7.2	Wöchentliche Wartung	7-1
7.3	Vierteljährliche Wartung – tHb-Kalibrierung	7-2
7.4	Jährliche Wartung	7-6
7.4.1	Peristaltikpumpenkassette ersetzen	
7.4.2	Gas-Eingangs/-Ausgangsbuchse ersetzen	
7.5	Bedarfswartung	7-9
7.5.1	Gasflasche ersetzen	
7.5.2	Druckerpapier ersetzen	7-11
7.5.3	Routinereinigung	
8 DI	IAGNOSTIK UND FEHLERSUCHE	8-1
8.1	Fehler- und Warnmeldungen	8-1
8.1.1	Warnmeldungen	8-2
8.1.2	Fehlermeldungen	8-7
8.1.3	Stoppmeldungen	
8.1.4	Nicht-Bereit-Meldungen	
0.1.0		
ö.2 8.2.1	Versionen übernrüfen	8-19 8_10
822	Systemtemperaturen überprüfen	8-20
8.2.3	Gasdruck überprüfen	
8.2.4	LEDs überprüfen	8-21
8.2.5	Luftdruck überprüfen	8-21
8.2.6	Batteriespannung überprüfen	
8.2.7	Kuhlungsventilator überprüten	
0.Z.Ŏ	Gasvenul uberpruten	8-23

8.2.9	Drehventil überprüfen	8-23
8.2.10	Werkseinstellungen (FSet) überprüfen	8-24
8.2.11	Barcodescanner überprüfen	8-24
8.2.12	Drucker überprüfen	8-25
8.2.13	Optik überprüfen	8-26
8.2.14	Ethernet-Schnittstelle überprüfen	8-27
8.2.15	Pumpenförderung überprüfen	8-28
8.2.16	Pumpenmotor überprüfen	8-29
8.2.17	Anzeige überprüfen	8-29
8.2.18	lastbildschirm (louchscreen) überprüfen	8-30
8.2.19		8-31
8.2.20	B-Lac-Einstellung.	8-32
8.2.21	Kassettensensor überprüten	8-34
8.3	Fehlersuche	8-35
8.3.1	Fehlerbehebungsverfahren für tHb/SO,	8-35
8.3.2	Fehlerbehebungsverfahren für Barcode-Scanner	8-36
0 EI		0 4
9 FL	JNKTIONSGRUNDLAGEN	9-1
0.1	Anwondungsboroich	0.1
9.1		
9.2	Messgrundlagen	9-1
9.3	Arbeitsweise	9-2
9.3 9.4	Arbeitsweise Probenentnahme und Handhabung	9-2 9-3
9.3 9.4 9.4.1	Arbeitsweise Probenentnahme und Handhabung Sicherheitsvorkehrungen	9-2 9-3
9.3 9.4 9.4.1 9.4.2	Arbeitsweise Probenentnahme und Handhabung Sicherheitsvorkehrungen Probenanforderungen	9-2 9-3 9-3
9.3 9.4 9.4.1 9.4.2 9.4.3	Arbeitsweise. Probenentnahme und Handhabung. Sicherheitsvorkehrungen Probenanforderungen Gerinnungshemmer und Probenentnahmegefäße	9-2 9-3 9-3 9-3 9-3
9.3 9.4 9.4.1 9.4.2 9.4.3 9.4.4	Arbeitsweise. Probenentnahme und Handhabung Sicherheitsvorkehrungen Probenanforderungen Gerinnungshemmer und Probenentnahmegefäße Spritzen.	9-2 9-3 9-3 9-3 9-3 9-3
 9.3 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 	Arbeitsweise. Probenentnahme und Handhabung. Sicherheitsvorkehrungen. Probenanforderungen. Gerinnungshemmer und Probenentnahmegefäße. Spritzen. Kapillarröhrchen.	9-2 9-3 9-3 9-3 9-3 9-3 9-3 9-3
9.3 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6	Arbeitsweise. Probenentnahme und Handhabung. Sicherheitsvorkehrungen Probenanforderungen Gerinnungshemmer und Probenentnahmegefäße Spritzen. Kapillarröhrchen. OPTI Medical ComfortSampler*	9-2 9-3 9-3 9-3 9-3 9-3 9-3 9-3 9-3 9-4
9.3 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6 9.4.7	Arbeitsweise. Probenentnahme und Handhabung. Sicherheitsvorkehrungen Probenanforderungen Gerinnungshemmer und Probenentnahmegefäße Spritzen. Kapillarröhrchen. OPTI Medical ComfortSampler*. Probenröhrchen	9-2 9-3 9-3 9-3 9-3 9-3 9-3 9-3 9-4 9-4
9.3 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6 9.4.7 9.4.8	Arbeitsweise. Probenentnahme und Handhabung. Sicherheitsvorkehrungen. Probenanforderungen. Gerinnungshemmer und Probenentnahmegefäße. Spritzen. Kapillarröhrchen. OPTI Medical ComfortSampler* Probenröhrchen. Handhabung und Lagerung der Proben.	9-2 9-3 9-3 9-3 9-3 9-3 9-3 9-4 9-4 9-4 9-4
 9.3 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6 9.4.7 9.4.8 9.5 	Arbeitsweise. Probenentnahme und Handhabung. Sicherheitsvorkehrungen. Probenanforderungen. Gerinnungshemmer und Probenentnahmegefäße. Spritzen. Kapillarröhrchen. OPTI Medical ComfortSampler*. Probenröhrchen. Handhabung und Lagerung der Proben.	9-2 9-3 9-3 9-3 9-3 9-3 9-3 9-3 9-4 9-4 9-4 9-4
 9.3 9.4 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6 9.4.7 9.4.8 9.5 9.5 9.5 	Arbeitsweise. Probenentnahme und Handhabung. Sicherheitsvorkehrungen. Probenanforderungen. Gerinnungshemmer und Probenentnahmegefäße. Spritzen. Kapillarröhrchen. OPTI Medical ComfortSampler*. Probenröhrchen. Handhabung und Lagerung der Proben. Verfahren Erforderliche Materialien	9-2 9-3 9-3 9-3 9-3 9-3 9-3 9-3 9-4 9-4 9-4 9-4 9-4 9-5
 9.3 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6 9.4.7 9.4.8 9.5 9.5.1 9.5.2 	Arbeitsweise. Probenentnahme und Handhabung. Sicherheitsvorkehrungen. Probenanforderungen. Gerinnungshemmer und Probenentnahmegefäße. Spritzen. Kapillarröhrchen. OPTI Medical ComfortSampler* Probenröhrchen. Handhabung und Lagerung der Proben. Verfahren. Erforderliche Materialien. Testbedingungen	9-2 9-3 9-3 9-3 9-3 9-3 9-3 9-3 9-4 9-4 9-4 9-4 9-4 9-4 9-5 9-6
 9.3 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6 9.4.7 9.4.8 9.5.1 9.5.1 9.5.2 9.5.3 	Arbeitsweise Probenentnahme und Handhabung Sicherheitsvorkehrungen Probenanforderungen Gerinnungshemmer und Probenentnahmegefäße Spritzen Kapillarröhrchen OPTI Medical ComfortSampler* Probenröhrchen Handhabung und Lagerung der Proben Erforderliche Materialien Testbedingungen Eingabewerte	9-2 9-3 9-3 9-3 9-3 9-3 9-3 9-3 9-4 9-4 9-4 9-4 9-4 9-4 9-5 9-5 9-6 9-6
 9.3 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6 9.4.7 9.4.8 9.5.1 9.5.1 9.5.2 9.5.3 9.5.4 	Arbeitsweise Probenentnahme und Handhabung	9-2 9-3 9-3 9-3 9-3 9-3 9-3 9-3 9-3 9-4 9-4 9-4 9-4 9-4 9-4 9-5 9-5 9-6 9-6 9-9
 9.3 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6 9.4.7 9.4.8 9.5.1 9.5.1 9.5.2 9.5.3 9.5.4 9.5.5 	Arbeitsweise Probenentnahme und Handhabung Sicherheitsvorkehrungen Probenanforderungen Gerinnungshemmer und Probenentnahmegefäße Spritzen Kapillarröhrchen OPTI Medical ComfortSampler* Probenröhrchen Handhabung und Lagerung der Proben Erforderliche Materialien Testbedingungen Eingabewerte Rechenwerte Kalibrierung	9-2 9-3 9-3 9-3 9-3 9-3 9-3 9-3 9-4 9-4 9-4 9-4 9-4 9-4 9-5 9-5 9-6 9-6 9-9 9-0
 9.3 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6 9.4.7 9.4.8 9.5.1 9.5.1 9.5.2 9.5.3 9.5.4 9.5.5 9.5.6 	Arbeitsweise Probenentnahme und Handhabung Sicherheitsvorkehrungen Probenanforderungen Gerinnungshemmer und Probenentnahmegefäße Spritzen Kapillarröhrchen OPTI Medical ComfortSampler* Probenröhrchen Handhabung und Lagerung der Proben Verfahren Erforderliche Materialien Testbedingungen Eingabewerte Rechenwerte Kalibrierung Qualitätskontrolle	9-2 9-3 9-3 9-3 9-3 9-3 9-3 9-3 9-3 9-4 9-4 9-4 9-4 9-4 9-4 9-5 9-5 9-6 9-6 9-9 9-9 9-10
 9.3 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6 9.4.7 9.4.8 9.5.1 9.5.1 9.5.2 9.5.3 9.5.4 9.5.5 9.5.6 9.5.7 	Arbeitsweise. Probenentnahme und Handhabung. Sicherheitsvorkehrungen Probenanforderungen Gerinnungshemmer und Probenentnahmegefäße Spritzen Kapillarröhrchen OPTI Medical ComfortSampler* Probenröhrchen Handhabung und Lagerung der Proben Verfahren Erforderliche Materialien Testbedingungen Eingabewerte Rechenwerte Rechenwerte Kalibrierung Qualitätskontrolle Referenzbereiche	9-2 9-3 9-3 9-3 9-3 9-3 9-3 9-3 9-3 9-4 9-4 9-4 9-4 9-4 9-4 9-4 9-4 9-4 9-5 9-6 9-6 9-6 9-9 9-9 9-9 9-10 9-11
 9.3 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6 9.4.7 9.4.8 9.5.1 9.5.1 9.5.2 9.5.3 9.5.4 9.5.5 9.5.6 9.5.7 9.5 8 	Arbeitsweise. Probenentnahme und Handhabung. Sicherheitsvorkehrungen Probenanforderungen Gerinnungshemmer und Probenentnahmegefäße Spritzen Kapillarröhrchen. OPTI Medical ComfortSampler* Probenröhrchen Handhabung und Lagerung der Proben Verfahren Erforderliche Materialien Testbedingungen Eingabewerte Rechenwerte Kalibrierung. Qualitätskontrolle Referenzbereiche Spezifische Leistungsmerkmale	9-2 9-3 9-3 9-3 9-3 9-3 9-3 9-3 9-4 9-4 9-4 9-4 9-4 9-4 9-5 9-6 9-6 9-6 9-9 9-9 9-9 9-10 9-11 9-11
 9.3 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6 9.4.7 9.4.8 9.5.1 9.5.1 9.5.2 9.5.3 9.5.4 9.5.5 9.5.6 9.5.7 9.5.8 9.5.9 	Arbeitsweise. Probenentnahme und Handhabung. Sicherheitsvorkehrungen. Probenanforderungen. Gerinnungshemmer und Probenentnahmegefäße. Spritzen. Kapillarröhrchen. OPTI Medical ComfortSampler* Probenröhrchen . Handhabung und Lagerung der Proben. Verfahren. Erforderliche Materialien. Testbedingungen. Eingabewerte. Rechenwerte. Kalibrierung. Qualitätskontrolle. Referenzbereiche Spezifische Leistungsmerkmale. Einschränkungen.	9-2 9-3 9-3 9-3 9-3 9-3 9-3 9-3 9-3 9-4 9-4 9-4 9-4 9-4 9-4 9-4 9-4 9-5 9-6 9-5 9-6 9-9 9-9 9-9 9-10 9-11 9-12
 9.3 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6 9.4.7 9.4.8 9.5.1 9.5.1 9.5.2 9.5.3 9.5.4 9.5.5 9.5.6 9.5.7 9.5.8 9.5.9 9.5.10 	Arbeitsweise. Probenentnahme und Handhabung. Sicherheitsvorkehrungen Probenanforderungen. Gerinnungshemmer und Probenentnahmegefäße Spritzen. Kapillarröhrchen. OPTI Medical ComfortSampler* Probenröhrchen Handhabung und Lagerung der Proben Verfahren Erforderliche Materialien. Testbedingungen Eingabewerte Rechenwerte Kalibrierung. Qualitätskontrolle Referenzbereiche Spezifische Leistungsmerkmale Einschränkungen Interferenzen	9-2 9-3 9-3 9-3 9-3 9-3 9-3 9-3 9-3 9-4 9-4 9-4 9-4 9-4 9-4 9-4 9-4 9-4 9-5 9-6 9-6 9-6 9-9 9-9 9-9 9-10 9-11 9-11 9-12 9-13
 9.3 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6 9.4.7 9.4.8 9.5.1 9.5.2 9.5.3 9.5.4 9.5.5 9.5.6 9.5.7 9.5.8 9.5.9 9.5.10 9.5.11 	Arbeitsweise. Probenentnahme und Handhabung. Sicherheitsvorkehrungen Probenanforderungen Gerinnungshemmer und Probenentnahmegefäße Spritzen Kapillarröhrchen OPTI Medical ComfortSampler* Probenröhrchen Handhabung und Lagerung der Proben Verfahren Erforderliche Materialien Testbedingungen Eingabewerte Rechenwerte Kalibrierung. Qualitätskontrolle Referenzbereiche Spezifische Leistungsmerkmale Einschränkungen Interferenzen Zubehör	9-2 9-3 9-3 9-3 9-3 9-3 9-3 9-4 9-4 9-4 9-4 9-4 9-4 9-5 9-6 9-6 9-6 9-9 9-9 9-10 9-11 9-11 9-12 9-13 9-14

10 ZUBEHÖR UND VERBRAUCHSMATERIALIEN......10-1

10.1	Analysator	10-1
10.2	Kassetten	10-1
10.3	Kontrollmittel/Kalibratoren	10-1
10.4	Bedarfsartikel	10-2
10.5	Zubehör	10-2
10.6	Gebrauchsanweisungen	10-2
10.7	Ersatzteile	10-2
10.8	Technische Unterstützung	10-2

MESSPARAMETER

рН	pH-1
pH (Trockensensor - B-Lac-Kassette)	pH-B-1
PCO ₂	PCO2-1
PCO ₂ (Trockensensor - B-Lac-Kassette)	РСО2-В-1
PO ₂	PO2-1
PO ₂ (Trockensensor - B-Lac-Kassette)	PO2-B-1
Natrium (Na ⁺)	Na-1
Kalium (K⁺)	K-1
Ionisiertes Calcium (Ca ⁺⁺)	Ca-1
Chlorid (Cl ⁻)	CI-1
Glucose (Glu)	Glu-1
Harnstoff-Stickstoff (BUN/Urea)	BUN-1
Laktat (B-Lac-Kassette)	Lac-1
Gesamthämoglobinkonzentration (ctHb) und Hämoglobinsauerstoffsättigung (SO ₂ %)	THB/SO2-1

ANHANG A - TECHNISCHE SPEZIFIKATIONEN	A-1
Messwerte	A-1
Luftdruck	A-1
Betriebshöhe	A-1
Verschmutzungsgrad	A-1
Betriebsparameter	A-2
Rechenwerte	A-5
Datenmanagement	A-6
Stromversorgung Netzteil	A-6
DC-Versorgung für Gerät	A-6
Überspannungskategorie	A-6
Maße und Gewicht	A-6
Klassifikationen	A-7
Temperatur	A-7
Einheiten der Mess- und Eingabewerte der Berechnungen	A-7
Umrechnungstabelle	A-8
Gleichungen	A-8
ANHANG B - MENÜSTRUKTUR	B-1
ANHANG C - WARTUNGSTABELLE	C-1
ANHANG D - PROTOKOLLFORMATE	D-1
Allgemeines Messprotokoll	D-1
SRC-Messprotokoll	D-2
SRC-Statistikprotokoll	D-3
QC-Messprotokoll	D-4
QC-Statistikprotokoll	D-5
Wartungsprotokoll	D-6
Fehlerprotokoll	D-7
B-Lac-Einstellung	D-8
INDEX	I-1

1	EINLEITUNG	1-1
1.1	Anwendungsbereich	1-1
1.2	Messprinzipien	1-1
1.3	Lieferinhalt	1-2
1.4	Gerätekomponenten	1-3
1.5	Verbrauchsmaterialien	1-8

1 EINLEITUNG

1.1 Anwendungsbereich

Der OPTI* CCA-TS2 Analysator ist für die folgenden Messungen im klinischen Laborumfeld und in der Notfallmedizin konzipiert: pH, pCO₂, pO₂, Natrium, Kalium, Calcium, Chlorid, Glucose, Harnstoff-Stickstoff, Laktat¹, Gesamthämoglobinkonzentration und Hämoglobinsauerstoffsättigung in Vollblutproben und pH, Natrium, Kalium, Calcium, Chlorid, Glucose, Harnstoff-Stickstoff in Serum- und Plasmaproben. Aufgrund seiner einfachen Handhabung kann der Analysator ohne aufwendige Schulung des Bedienpersonals betrieben werden.

Die nachfolgende Tabelle enthält wichtige Informationen bezüglich Probenart, Maßeinheiten und Messbereichen der einzelnen Parameter.

	Probenart		Maßeinheiten		Messbereich	Anzeige- Auflösung	
Parameter	Vollblut	Plasma	Serum	Vorgabe	Andere	Vorgabe-Einheiten	Niedrig/ Hoch
рН	х	х	х	pН		6,6 - 7,8	0,01/0,001
pCO ₂	х			mmHg	kPa	10 - 200	1/0,1
pO ₂	х			mmHg	kPa	10 - 700	1/0,1
Na⁺	х	х	х	mmol/L		100 - 180	1/0,1
K⁺	х	х	х	mmol/L		0,8 - 9,99	0,1/0,01
Ca++	х	х	х	mmol/L	mg/dL	0,2 - 3,0	0,01
Cl ⁻	х	х	х	mmol/L		50 - 160	1/0,1
Glu	х	х	х	mg/dL	mmol/L	30-400 / 1,7-22,2	0,1
BUN/Urea	х	х	х	mg/dL	mmol/L	2,8-112,0 / 1-40	0,1/0,01
Lac	х			mmol/L	mg/dL	0,3-17,5 / 2,7-157,7	0,01
tHb	х			g/dL	mmol/L, g/L	5-25 / 3,1-15,5	0,1
sO ₂	х			%		60 - 100	1/0,1

1.2 Messprinzipien

Der OPTI CCA-TS2 Analysator ist ein mikroprozessor-gesteuertes Gerät, das mit Hilfe optischer Elektroden (Optoden) optische Fluoreszenz misst.

Eine Einwegkassette enthält alle zur Kalibrierung, Probenmessung und Probenentsorgung notwendigen Elemente. Mit Hilfe des Barcodescanners werden die kassettenspezifischen Kalibrierinformationen von der Kassettenverpackung in das Gerät eingelesen. Danach wird die Kassette in die Messkammer eingeführt.

Der Analysator wärmt die Kassette auf $37,0 \pm 0,1$ °C auf, und führt dann einen Kalibriertest der pCO₂- und pO₂-Sensoren durch, indem eine Gasmischung über die Optodensensoren geleitet wird. Die pH- und Ionenkanäle werden mit einer Präzisions-pH-Pufferlösung in der Kassette kalibriert. Die tHb- und SO₂-Kanäle werden bei der Herstellung kalibriert.

¹ B-Lac-Kassetten sind zur Zeit in Deutschland nicht erhältlich.

Wenn die Kalibrierung bestätigt wird, saugt der Analysator die Blutprobe in die Kassette und über die Optodensensoren und misst die Fluoreszenzemission der Optoden, nachdem diese mit der Blutprobe äquilibriert sind.

Nach einer Einzelmessung wird die Kassette mit der sicher verschlossenen Blutprobe aus dem Analysator entfernt und entsorgt. Reagenzien, Blut oder Abwasser gelangen nie in das Innere des Analysators.

1.3 Lieferinhalt

Bevor Sie mit dem Installieren Ihres Systems beginnen, vergewissern Sie sich, dass alle Bestandteile, die zum Aufbau des Analysators benötigt werden, vorhanden sind.

- Netzgerät mit Stromkabel
- Batterie
- 1 Multilevel-Standardreferenzkassette (SRC), Level 1, 2 und 3
- Druckerpapier
- Kalibrierkassette

Des Weiteren werden die folgenden Verbrauchsmaterialien zur Inbetriebnahme benötigt:

- OPTI Sensorkassetten
- Gasflasche
- Qualitätskontrollmaterial (OPTI CHECK oder OPTI CHECK PLUS (für Glucose- oder BUN/Urea-Kassetten)

1.4 Gerätekomponenten

Bevor Sie mit der Inbetriebnahme Ihres OPTI CCA-TS2 Analysators beginnen, ist es wichtig, dass Sie sich mit den Bestandteilen des Gerätes vertraut machen:

Abb. 1-1 Hauptkomponenten des OPTI CCA-TS2 Analysators

Touch Screen

Abb. 1-2 Tastbildschirm

Statusanzeige

Abb. 1-3 Statusanzeige

Probenmesskammer

Die Aktivitäten des Analysators, Probenergebnisse und andere wichtige Informationen werden auf dem **Tastbildschirm (Touch Screen)** angezeigt (Abb. 1-2). Die Bedienung des Gerätes erfolgt über die grafische Benutzeroberfläche, mit deren Hilfe alle Funktionen des Analysators durchgeführt werden können.

Rechts neben der Sichtanzeige befindet sich eine zweifarbige **Statusanzeige** (Abb. 1-3). Während des Betriebs sind die folgenden Anzeigen sichtbar:

- **Grünes Licht**: Der Analysator führt eine Messung durch und wartet auf eine Benutzeraktion.
- Blinkendes Grünes Licht: Das System führt einen Kalibrier- oder Messvorgang durch. Die Klappe darf nicht geöffnet werden.
- **Rotes Licht**: Auftreten eines Fehlers, der den gegewärtigen Vorgang beendet.
- **Blinkendes Rotlicht**: Das System hat ein Problem festgestellt und benötigt die Hilfe des Benutzers, bevor die Messung fortgeführt werden kann.

Abb. 1-4 Messkammer öffnen

Unter der Messkammerklappe befindet sich die **Probenmesskammer** für die OPTI Kassette. Die Klappe kann durch Drücken der roten Öffnungstaste geöffnet werden (Abb. 1-4).

Im Innern der Messkammer befinden sich mehrere Leuchtdioden und zwei Infrarot-Laser.

Barcodescanner

Abb. 1-5 Barcodescanner

Thermodrucker

Auf der rechten Seite des Gerätes befindet sich ein **Barcodescanner**, mit dem Chargennummern, Verfallsdatum, Kontrollbereiche von Kassetten, Kontrollmitteln, SRCs und Gasflaschen, sowie Benutzer- und Patienten-Identifikationen eingelesen werden können (Abb. 1-5).

Abb. 1-6 Thermodrucker

Der **Thermodrucker** befindet sich im Druckerfach auf der hinteren linken Seite des Gerätes (Abb. 1-6). Die Klappe des Druckerfachs kann durch Drücken der Entriegelungstaste geöffnet werden. Der Analysator druckt Messwerte, QC-Werte, Kalibrierwerte, Patienteninformation und Diagnosewerte.

Peristaltikpumpe

Abb. 1-7 Peristaltikpumpe

Innerhalb desselben Faches befindet sich eine **Peristaltikpumpen**-Kassette, die zum Transport von Flüssigkeiten und Gasen benutzt wird (Abb. 1-7).

HINWEIS: Die Kassette ist auswechselbar. (Siehe Kapitel 7.4.1 Wartung).

Typen- und Seriennummern

Abb. 1-8 Typen- und Seriennummern

Geräterückseite

Abb. 1-9 Rückseite des OPTI CCA-TS2

Batterie

Abb. 1-10 Batterie

Auf der Rückseite des Gerätes befinden sich

Die **Typen- und Seriennummern** befinden sich auf dem **Geräteschild** auf der Unterseite des Gerätes.

(Abb. 1-9):

(Abb. 1-8).

- ein **Ethernet-Anschluss** für Datenexport und Netzwerkanbindung.
- eine Leuchtdiode (LED), die den Ladestatus der Batterie anzeigt.
- ein USB Port Typ A zum Aktualisieren der Software und Datenimport/-export mittels USB-Gerät.
- ein **USB Port Typ B** zum Datenexport an einen Computer.
- ein **Fach** zur Aufbewahrung einer Ersatzpapierrolle, der SRC, oder anderer Zubehörteile.

Auf der linken Seite des Gerätes befindet sich die wiederaufladbare **Batterie**. Sie kann durch Drücken des Griffs und Herausziehen entfernt werden (Abb. 1-10). Die Batterie ist zum Betrieb des OPTI CCA-TS2 ohne Netzanschluss vorgesehen. Bei Netzbetrieb wird die Batterie automatisch geladen.

Netzanschlussbuchse und Einschalttaste

Abb. 1-11 Netzanschlussbuchse und Einschalttaste

Multifunktionsgriff

Auf der linken Seite des Gerätes befindet sich die Netzanschlussbuchse, mit welcher der OPTI CCA-TS2 über ein Netzteil an ein externes Stromnetz angeschlossen werden kann (Abb. 1-11). Neben der Anschlussbuchse befindet sich die Einschalttaste (Abb. 1-11).

HINWEIS: Zum Ausschalten des Gerätes halten Sie die Einschalttaste 2 Sekunden lang gedrückt.

Abb. 1-12 Multifunktionsgriff

Abb. 1-13 Griff herunterziehen

Fig. 1-14 Klappständer

Der OPTI CCA-TS2 verfügt über einen Multifunktionsgriff, der sowohl als Tragegriff als auch als Klappständer verwendet werden kann. Mit Hilfe des Klappständers kann das Gerät in einem idealen Betrachtungswinkel für den Benutzer positioniert werden.

- Zum Ausfahren des Griffs in die Trageposition stellen Sie den Analysator auf die Rückseite. Stecken Sie Ihre Finger in die Aussparungen auf beiden Seiten des Griffs, und ziehen Sie den Griff hoch, bis er voll ausgefahren ist. (Abb. 1-12).
- Um den Griff als Klappständer zu benutzen, ziehen Sie den Griff herunter (Abb. 1-13), bis er in der unteren Position einrastet (Abb. 1-14). Stellen Sie das Gerät dann wieder in die ursprügliche Position zurück (Abb. 1-15).

Abb. 1-15 Klappständer

1.5 Verbrauchsmaterialien

OPTI Sensorkassette

Abb. 1-16 OPTI Sensorkassette

Probeneinfüllmund und Spritzenadapter

Abb. 1-17 Probeneinfüllmund und Spritzenadapter

Die **OPTI Sensorkassette** enthält ein integrales Drehventil, das die Probe nach der Messung einschließt und somit eine sichere und saubere Entsorgung der Probe gewährleistet (Abb. 1-16).

Der **Probeneinfüllmund** befindet sich in der Kassette und steht aus der Messkammer hervor, was eine einfache, automatische Probeneingabe ermöglicht. Er enthält einen abnehmbaren **Spritzenadapter** für Probeneingaben mit einer Spritze. Für Probeneingaben mit Kapillarröhrchen wird der Adapter entfernt (Abb. 1-17).

- HINWEIS: Der Spritzenadapter kann entfernt werden, während sich die Kassette in der Messkammer befindet.
- HINWEIS: Die Probe darf nicht in den Füllmund eingespritzt werden. Sie wird automatisch aspiriert.

Saugröhre (E-Lyte CCA Kassette)

Abb. 1-18 Saugröhre

Die **Saugröhre** wird bei der E-Lyte CCA Kassette zur Aufnahme von Proben aus Probenröhrchen benutzt (Fig. 1-18).

HINWEIS: Bei der Anwendung der Saugröhre bei Vollblutproben werden Elektrolyt- und pH-Werte angegeben, aber keine von pCO, abgeleiteten Werte erstellt.

Standardrererenzkassette (SRC)

Abb. 1-19 Standardreferenzkassette

tHb-Kalibrierkassette

Die Standardreferenzkassette (SRC)

(Abb. 1-19) ist eine Mehrweg-Sensorkassette, die für die tägliche Qualitätskontrolle benutzt wird. Die Multilevel-SRC befindet sich im Aufbewahrungsfach des Analysators. Alle neuen Geräte werden mit einer Multilevel SRC geliefert, mit der Messungen auf 3 Leveln durchgeführt werden können. Bei Nichtbenutzung sollte die SRC im Verpackungsbeutel aufbewahrt werden (weitere Anweisungen siehe Kapitel 4.5.1).

Abb. 1-20 Kalibrierkassette

Die Mehrweg-Kalibrierkassette (Abb. 1-20) wird zur vierteljährlichen Kalibrierung des OPTI CCA-TS2 Analysators benutzt (s. Abschnitt **7.3** Vierteljährliche Wartung - Kalibratormessung).

Gasflasche

Abb. 1-21 Gasflasche

Zur Kalibrierung des OPTI CCA-TS2 wird ein **Präzisionsgas** verwendet, das sich in einer separaten Niederdruck-Einwegflasche befindet. Nach Einlesen des Barcodes wird die Flasche auf der rechten Seite des Gerätes installiert (Abb. 1-21). Im TS2 können nur Gasflaschen mit rotem Unterteil verwendet werden (BP7162).

Sie kennen jetzt die Grundeinheiten des Analysators und können das System installieren.

2	INBETRIEBNAHME	
2.1	Wichtige Sicherheitshinweise	2-1
2.2	Wahl des Standorts	2-1
2.3	Inbetriebnahme	2-2

2 INBETRIEBNAHME

2.1 Wichtige Sicherheitshinweise

Bevor Sie mit der Inbetriebnahme Ihres OPTI* CCA-TS2 Analysators beginnen, ist es wichtig, dass Sie die Informationen, die in der Übersicht in diesem Kapitel enthalten sind, sorgfältig lesen.

Zu Ihrer eigenen Sicherheit und zur fachgerechten Bedienung des Gerätes sollten Sie die folgenden Maßnahmen beachten:

- Der Analysator muss in einer trockenen Umgebung betrieben werden (fern von Waschund Ausgussbecken).
- Der Analysator muss von explosiven Gasen und Dämpfen ferngehalten werden.
- Blutproben und Entnahmegefäße müssen immer mit Vorsicht gehandhabt werden.
- Es sollten geprüfte Schutzhandschuhe getragen werden, um einen direkten Kontakt mit der Blutprobe zu vermeiden.
- Die Entsorgung der OPTI Kassette muss unter Beachtung der geltenden Sicherheitsvorschriften erfolgen.

2.2 Wahl des Standorts

Die Wahl des Standortes ist für den störungsfreien Betrieb des Analysators wichtig. Bevor mit der Inbetriebnahme begonnen wird, muss ein Standort gewählt werden, der für die Probenentnahme zweckmäßig ist und den folgenden Anforderungen entspricht:

- Vorhandensein einer Schuko-Steckdose.
- Schutz vor direktem Sonnenlicht.
- Raumtemperatur von 10 30 °C.
- Maximale relative Luftfeuchtigkeit von 5% 95%, nicht kondensierend.
- Ausreichend Platz, damit Luft frei um das Gerät zirkulieren kann.
- Nicht in der Nähe von starken elektromagnetischen Feldern, wie sie z.B. von elektrischen Motoren oder Röntgengeräten erzeugt werden.
- Nicht in der Nähe von explosiven Gasen oder Dämpfen.
- Eine feste Stellfläche mit ausreichendem Abstand zu den Belüftungsöffnungen auf der Bodenplatte des Analysators, um ein Überhitzen des Gerätes zu vermeiden.

HINWEIS: Die obengenannten Anforderungen gelten auch für den Batteriebetrieb des OPTI CCA-TS2.

2.3 Inbetriebnahme

Der OPTI CCA-TS2 Analysator kann jetzt für die Inbetriebnahme vorbereitet werden.

Stellen Sie den Analysator auf eine feste Tischoberfläche mit ausreichender Arbeitsfläche in der Nähe eines Stromanschlusses.

Abb. 2-1 Netzgerät anschließen

Abb. 2-2 Batterie installieren

Abb. 2-3 Einschalttaste

1. Netzgerät anschließen

- Das Netzgerät wird über die Anschlussbuchse auf der linken Seite an das Gerät angeschlossen.
- Schließen Sie das Stromkabel an das Netzgerät an.
- Stecken Sie das Kabel in eine Schuko-Steckdose (Abb. 2-1).
- HINWEIS: Zum Vermeiden von Überspannungsschäden am OPTI CCA-TS2 und anderen elektronischen Geräten wird die Verwendung von Überspannungsschutzgeräten empfohlen.

2. Batterie installieren

- Die Batterie wird in das Gehäuse auf der linken Seite des OPTI CCA-TS2 geschoben (Abb. 2-2).
- HINWEIS: Die Batterie muss mindestens 2,5 Stunden vor Batteriebetrieb des OPTI CCA-TS2 geladen werden. Sie lädt sich automatisch bei Netzbetrieb des Analysators.

Die untere Status-LED auf der Rückseite des Gerätes leuchtet grün, wenn die Batterie aufgeladen wird. Die obere Status-LED leuchtet grün, wenn die Batterie voll geladen ist.

3. Strom einschalten

• Drücken Sie die Einschalttaste auf der linken Seite des Geräts und schalten Sie den Strom ein (Abb. 2-3).

Abb. 2-4 Systemstart

Abb. 2-5 Neue Gasflasche

Ba	rcode		
Barcode für neue Gasflasche einlesen			
	Manuell	Abbrechen	

Abb. 2-6 Barcode einlesen

• Die nebenstehende Anzeige erscheint nach Einschalten des Stroms (Abb. 2-4).

4. Gasflasche installieren

- Die nebenstehende Anzeige (Abb. 2-5) erscheint bei einer Erstinbetriebnahme, wenn keine Gasflasche installiert ist.
- Drücken Sie auf <Neue Gasflasche>.
- Schrauben Sie die Verschlusskappe der Flasche ab.
- Nach Aufforderung (Abb. 2-6) lesen Sie den Barcode der neuen Gasflasche ein. Halten Sie hierzu den Barcode auf der Packungsbeilage in einem Abstand von 5-8 cm vor den Barcodescanner auf der rechten Seite des Gerätes.
- Die rote Linie des Barcodescanners sollte den gesamten Barcode abdecken.
- Bei einem gültigen Barcode ertönt ein Signalton.
- Wird der Barcode beim ersten Versuch nicht vom Gerät erkannt, wiederholen Sie die Barcode-Eingabe.
- Notieren Sie das Installationsdatum auf der Flasche zu Kontrollzwecken.
- HINWEIS: Ist die Packungsbeilage nicht griffbereit, kann die Chargennummer auf dem Etikett der Gasflasche auch manuell eingegeben werden. Drücken Sie hierzu die Schaltfläche <Manuell> in der Anzeige <Barcode einlesen> (Abb. 2-6), und geben Sie die Chargennummer über den numerischen Tastenblock ein.

Abb. 2-7 Gasflasche installieren

Abb. 2-8 Gasflasche installieren

Abb. 2-9 Neue Gasflasche

Abb. 2-10 Bereit-Anzeige

- Nach Aufforderung (Abb. 2-7) schieben Sie die Flasche ins Gehäuse und drehen Sie sie im Uhrzeigersinn fingerfest ein (Abb. 2-8). Drücken Sie auf
- HINWEIS: Die Gasflasche läuft 6 Monate nach Installation oder nach Überschreiten des auf dem Etikett angegebenen Verfallsdatums ab.
- HINWEIS: Das Barcode-Etikett enthält das Verfallsdatum der Flasche. Der Analysator gibt 2 Wochen vor Ablauf des Verfallsdatums eine Warnmeldung aus.

- HINWEIS: Wird nach der Erstinstallation eine gebrauchte Gasflasche entfernt und wieder eingesetzt, wählen Sie Nein als Antwort auf die Frage <Neue Gasflasche?>. Sie werden dann aufgefordert, die Benutzungsdauer der Gasflasche in Wochen mit Hilfe des numerischen Tastaturfelds einzugeben (siehe Kapitel 7.5.1). Hierbei erweist sich das auf der Gasflasche notierte Installationsdatum als nützlich.

Der OPTI CCA-TS2 beginnt jetzt mit der Aufwärmphase mit anschließender Gasspülung, was durch einen Statusbalken auf dem Bildschirm angezeigt wird.

Nach Abschluss der Aufwärmphase erscheint die **<Bereit>**-Anzeige im Hauptmenü (Abb. 2-10).

Abb. 2-11 Druckerklappe öffnen

Abb. 2-12 Druckerpapier einlegen

5. Druckerpapier installieren

• Drücken Sie auf die rote Entriegelungstaste der Druckerklappe zum Öffnen des Druckerfachs (Abb. 2-11).

- Legen Sie die Papierrolle in die Papierschale ein.
- Ziehen Sie das Ende der Papierrolle aus der Papierschale heraus (Abb. 2-12).

Abb. 2-13 Druckerklappe schließen

- Halten Sie das überstehende Ende der Papierrolle ausserhalb des Druckerfaches fest, und schließen Sie die Druckerklappe (Abb. 2-13).
- Das Druckerpapier wird automatisch vom Drucker erfasst und weiter transportiert.

Ab. 2-14 Barcode scannen

Abb. 2-15 Benutzer-ID eingeben

Abb. 2-16 Neuer Kalibrator

6. tHb-Kalibrierung durchführen

Bei der Erst-Inbetriebnahme des Analysators sollte vor der Durchführung von Patientenmessungen die tHb-Kalibrierkassette gemessen werden. Danach sollte die tHb-Kalibrierung in vierteljährlichen Abständen durchgeführt werden.

Der Analysator zeigt an, wann die nächste tHb-Kalibrierung fällig ist. Die Kalibrierkassette befindet sich im Aufbewahrungsfach auf der Rückseite des Gerätes.

- Im Hauptmenü halten Sie den unteren Barcodestreifen der tHb-Kalibrierkasette in einem Abstand von 5-8 cm vor den Barcodescanner auf der rechten Seite des Analysators (Abb. 2-14).
- HINWEIS: Die tHb-Kalibrierung kann auch vom QC-Menü aus durchgeführt werden. Drücken Sie hierzu <QC-Manager>QC>tHb-Kalibrator>, und geben Sie dann den Barcode ein.
 - Die rote Linie des Scanners sollte den gesamten Barcode abdecken.
 - Ein Signalton ertönt, und die Statusanzeige leuchtet zur Bestätigung eines gültigen Barcodes grün auf.
 - Wenn die Option <Nicht geschützte Benutzer-ID> in den Systemeinstellungen aktiviert ist, (siehe Abschnitt 3.2.3), werden Sie jetzt aufgefordert, eine Benutzer-Identifikation einzugeben (Abb. 2-15). Der Zugriff auf bestimmte Systemfunktionen kann in den Sicherheitseinstellungen beschränkt werden.
- HINWEIS: Benutzer-Identifikationen können in dieser Anzeige auch über den Barcodescanner eingegeben werden.
 - Eine Warnmeldung zeigt an, wenn eine neue Kassettencharge benutzt wird (Abb. 2-16). Drücken Sie auf **<Weiter>**.
| tHb | _ | | |
|--------------------------------------|----|--|--|
| Optik und Klappeninnenseite reinigen | | | |
| | ок | | |

Abb. 2-17 Optik reinigen

 Reinigen Sie das Optikfenster und die Innenseite der Messkammerklappe vorsichtig mit einem weichen, faserfreien Tuch. Drücken Sie

Abb. 2-18 Klappe öffnen

Abb. 2-19 Kassette einsetzen

• Drücken Sie auf die rote Öffnungstaste zum Öffnen der Messkammerklappe (Abb. 2-18).

• Wischen Sie beide Seiten der tHb-Kalibrator-Kassette mit einem sauberen, trockenen Tuch ab und versichern Sie sich, dass die Kassette sauber ist. Legen Sie die Kassette in die Messkammer ein, und drücken Sie diese nach unten. Stellen Sie sicher, dass die Kassette richtig eingesetzt ist (Abb. 2-19).

Abb. 2-20 Klappe schließen

QC>tHb		_	
Messung	5	22:48	04-Jan
tHb-Ka Mess	librierun ^{ung} 3	ng - Bitte 3%	warten

Abb. 2-21 tHb-Kalibrierung

Messung	5	22:46	04-Jan
fun Kassette	lihriari i	na Ritte v	arton
Bi	tte Kasse	ette entferne	n

Abb. 2-22 Kassette entfernen

• Schließen Sie die Messkammerklappe (Abb. 2-20).

• Das Gerät stellt dann automatisch die Anwesenheit der Kalibrierkassette fest und beginnt mit dem Kalibriervorgang (Abb. 2-21).

- Nach Abschluss der Kalibrierung werden Sie aufgefordert, die Kassette zu entfernen (Abb. 2-22).
- Legen Sie die Kalibrierkassette sofort nach der Entnahme aus dem Gerät wieder in die Packung zurück.
- HINWEIS: Kalibrierkassetten dürfen nur im selben Gerät wieder verwendet werden.

	OPTI CCA OPTI CCA HbCal-Prot TT-MMM-JJ	1edical -TS2 tokoll HH:MM
S/N: XXXX	Ι	
Version: X	.XX.XXXX	
Benutzer-	D:	
Benutzer	123	
HbCal-Cha	arge: XXXXXX	
VerfDatu	m: MMM JJJJ	
HbCal-Da	tum: TT-MMM	-11
Kalibriere	rgebnisse:	
	Messw.	Rechenw.
tHb	12.9	13.0
S02(%)	74.6	74.9
Kalibrierfa	aktoren:	
	ALT	NEU
F1	1.023	1.014
F2	1.087	1.080
F3	1.089	1.094
F4	0.000	0.000
F5	0.000	0.000
G1		1.062
G2		1.087
G3		1.082

Abb. 2-23 HbCal-Protokoll

Abb. 2-24 Bereit-Anzeige

• Das Gerät druckt dann das tHb-Kalibrierprotokoll mit Kalibrierergebnissen und -Faktoren (Abb. 2-23).

- Nach Beendigung der Kalibrierung erscheint die **<Bereit>**-Anzeige im Hauptmenü (Abb. 2-24), und der OPTI CCA-TS2 ist jetzt betriebsbereit.
- Bei einem neuen Analysator sollten vor Beginn der Patientenmessungen Kontrollmessungen durchgeführt werden. Dazu müssen zuerst die Chargeninformationen der OPTI Check Kontrollmittel in das Gerät eingegeben werden. Die SRC-Kassetten müssen vor Gebrauch nicht eingestellt werden und befinden sich im Aufbewahrungsfach auf der Rückseite des Gerätes.
- Informationen zu den QC-Einstellungen finden Sie in Abschnitt 3.2.1 der Gebrauchsanweisung. Anweisungen zur Durchführung von QC-Messungen sind in Kapitel 4.5 enthalten.

Abb. 2-25 Hauptmenü

7. Hauptmenü (Home)

Das Hauptmenü (Abb. 2-25) erscheint, wenn der Analysator betriebsbereit ist und enthält wichtige Statusinformationen:

- **<Gas>** zeigt den verbleibenden Gasflaschengehalt an.
- **<Baro>** zeigt den aktuellen Luftdruck an.

Vom Hauptmenü aus können die folgenden Systemfunktionen aufgerufen werden:

- <Daten-Manager> In diesem Menü können Patienten-, QC- und Diagnostik-Informationen gedruckt werden. Es gibt Ihnen auch die Möglichkeit, Daten zu importieren und exportieren. Informationen hierzu finden Sie in Kapitel 6. Datenmanagement.
- <QC-Manager> In diesem Menü können Kontrollmessungen durchgeführt werden. Weitere Informationen hierzu finden Sie in Kapitel 4. Kalibrieren und Qualitätskontrolle.
- **<System-Manager>** Dieses Menü enthält die folgenden Einstellungen und Funktionen:
 - Zeit und Datum (Kapitel 3.1)
 - Einstellungen (Kapitel 3.2)
 - Wartung (Kapitel 3.2.5 und 7.1)
 - Diagnostik (Kapitel 8.2)

3 S	YSTEMEINSTELLUNGEN	3-1
3.1	Zeit- und Datumseinstellung	3-1
3.2	Einstellungen	
3.2.1	QC-Einstellungen	
•	3.2.1.1 Kontrollmaterialien einrichten	
	3.2.1.2 QC-Sperre einstellen	
3.2.2	Patienteneinstellungen	
	3.2.2.1 Patienteninformationen einrichten	
	3.2.2.2 Ergebnisanzeige deaktivieren	
	3.2.2.3 Testprofile einrichten	
	3.2.2.4 Rechenwerte einrichten	
	3.2.2.5 Eingabe des tHb-Werts	
	3.2.2.6 Messwertbereiche einstellen	
	3.2.2.7 Rechenwertbereiche einstellen	
	3.2.2.8 Probenbehälter wählen	
	3.2.2.9 Korrelationsfaktoren einstellen	3-21
3.2.3	Systemschutz einstellen	
	3.2.3.1 Sicherheitseinstellungen	
	3.2.3.2 Passwort einstellen	
	3.2.3.3 System reinitialisieren	
3.2.4	Verschiedene Systemeinstellungen	
	3.2.4.1 Drucker einstellen	
	3.2.4.2 Maßeinheiten einstellen	
	3.2.4.3 Sprache einstellen	
	3.2.4.4 Hardware-Einstellungen	
	3.2.4.5 Kommunikationseinstellungen	
	3.2.4.6 Ethernet-Einstellungen	3-41
3.2.5	Wartungseinstellungen	

3 SYSTEMEINSTELLUNGEN

Der OPTI* CCA-TS2 Analysator ist darauf ausgelegt, einfach und effizient Probenanalysen durchzuführen. Über den Tastbildschirm können Sie Patientendaten eingeben und Mess-, QCund Diagnostikprotokolle drucken, so wie zusätzliche Informationen eingeben, um die Leistung des Gerätes den Anforderungen Ihres Labors anzupassen.

Zum Schutz der Systemeinstellungen bietet der OPTI CCA-TS2 mehrere Sicherheitsfunktionen, mit denen der Zugriff auf die Einstellungsmenüs auf bestimmte Benutzer beschränkt werden kann (siehe Kapitel 2.3.2). Sind diese Funktionen aktiviert, können Änderungen an den Systemeinstellungen nur von dazu berechtigten Benutzern vorgenommen werden.

Alle hier eingegebenen Systemeinstellungen verbleiben auch nach Ausschalten des Gerätes im Systemspeicher.

3.1 Zeit- und Datumseinstellung

System Bereit S	17:13	21-Mär	
Zeit und Datur	m Diagi	nostik	
Einstellunge	n War	tung	

Abb. 3-2 Zeit und Datum

- Im Hauptmenü drücken Sie auf die Schaltfläche
 <System-Manager> (Abb. 3-1), um das
 <System>-Menü aufzurufen.
- 2. Wählen Sie **<Zeit und Datum>** (Abb. 3-2).
- Geben Sie nach Aufforderung Benutzer-ID und Passwort ein (Abb. 3-3) (Werkseinstellung ADMIN/ADMIN), und die Anzeige **<Zeit und** Datum> erscheint.

Login	
Benutzer-ID:	
ADMIN	I
Passwort:	
	1
ок	Abbrechen

Abb. 3-3 Anmelden

System>7eit	und Datu	ım	
Bereit	5	17:14	21-Mär
Zeitformat	12h C	24h (•	
Zeit	17:14	1	
Datum	21-Mär-2	2013	K
	-	_	
Abbrechen		E	Speichern
			8

Abb. 3-4 Zeit und Datum

 In der Anzeige **System>Zeit und Datum>** (Abb. 3-4) drücken Sie auf , um die Vorgabe-Einstellungen unverändert zu lassen,

oder auf zum Aufrufen eines numerischen Tastaturfelds, mit dem Sie die Zeit- und Datumseinstellungen ändern können.

- Um das <Zeitformat> von einer <12 h>-Anzeige in eine <24 h>-Anzeige zu ändern, drücken Sie auf das jeweilige Optionsfeld.
- 6. Drücken Sie auf Speichern zum Akzeptieren der Änderungen.
- 7. Nach Eingabe der Änderungen können Sie sich durch Drücken der Schaltfläche rechts unten im Bildschirm abmelden.
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

3.2 Einstellungen

Abb. 3-5 Einstellungen

Mit den Einstellungsmenüs können Sie Qualitätskontroll-Materialien einrichten, Druckprotokolle einstellen, den Systemschutz aktivieren und andere Systemfunktionen programmieren.

Das **<Einstellungen>**-Menü enthält die folgenden Funktionen: **<Patienten/QC>**, **<Schutz>** and **<System>**.

- 1. Im Hauptmenü drücken Sie auf **<System-**Manager>.
- 2. Im **<System>**-Menü wählen Sie **<Einstellungen>** (Abb. 3-5).

3.2.1 QC-Einstellungen

3.2.1.1 Kontrollmaterialien einrichten

Abb. 3-6 QC wählen

System>Einst	ellungen>	System>Einstellungen>QC			
Bereit	No. 17:07 27-Jun				
Level	Bereiche	e 1	Be	reiche 2	
Barcode einlesen Manueller Barcode					
QC-Einstellu	ng				
Nächs	ten Barco	de e	inles	sen	
Manuel	1	A	bbred	hen	
Art	TI CHECK	Pli	ls		
Rili-BÄK aktivieren 🔲					
Abbrechen	Vorgab	e	2	Speichern	

Abb. 3-7 Barcode scannen

Beim Öffnen einer neuen Packung OPTI CHECK oder OPTI CHECK PLUS sollten Chargennummer und Zielwerte in den Analysator eingegeben werden. Jeder QC-Level hat eine eigene Chargennummer, die auf der Packungsbeilage der Kontrollmittelpackung aufgedruckt ist.

HINWEIS: OPTI CHECK und OPTI CHECK PLUS Kontrollmittel sind für den OPTI CCA-TS2 Analysator hergestellt und haben bestimmte Zielwerte für alle Messwerte.

- HINWEIS: Der im nachstehenden Abschnitt beschriebene Vorgang zum Programmieren der Kontrollbereiche ist für alle Level identisch.
- HINWEIS: Der OPTI CCA-TS2 kann gleichzeitig Informationen für jeweils eine OPTI CHECK und eine OPTI CHECK PLUS Charge für alle Level speichern.
- HINWEIS: Zur Einstellung RiliBÄK-konformer Zielwertbereiche für die Kontrollmittel wählen Sie <Rili-BÄK aktivieren> im Register <Level> im QC-Menü. Bitte wenden Sie sich an Ihre OPTI Vertretung bezüglich der Passwortinformationen.
- 1. Im Hauptmenü wählen Sie **<System-**Manager> und dann **<Einstellungen>**.
- 2. Geben Sie Benutzer-ID und/oder Passwort ein, wenn diese Funktionen im Systemschutzmenü aktiviert wurden (siehe Abschnitt 3.2.3.1).
- 3. Auf dem Register **<Patienten/QC>** wählen Sie **<QC>** (Abb. 3-6).
- Nehmen Sie das Barcode-Blatt aus der Kontrollmittelpackung und lesen Sie zuerst Barcode A f
 ür den entsprechenden OPTI CHECK oder OPTI CHECK PLUS Level ein (Abb. 3-7).
 - Halten Sie den Barcodestreifen in einem Abstand von 5-8 cm vor den Barcodescanner auf der rechten Seite des Analysators.

System>Einstellungen>QC			
Bereit	5 17:0)8 27-Jun	
Level	Bereiche 1	Bereiche 2	
Barcode e	inlesen	Manueller Barcode	
Level	1 2 • C	°,	
Chargennum	imer	J.	
Ablaufdatum			
Art OP	TICHECK PIC	ıs	
Rili-BÄK aktivieren 🔲			
Abbrechen	Vorgabe	P Speichern	

Abb. 3-8 Chargeninformationen

System>E	instellunge	n>QC		_
Bereit	5	17:1	2	21-Mär
Level	Berei	Bereiche 1		iche 2
	Niedrig		Hock	n
pH 🛛	6.600	2	7.800	Ţ
PC02	10.0	/	200.0	Ţ
P02	10.0	/	700.0	J
Na+	100.0	/	180.0	Ţ
К+ [0.80	/	9.99	Ţ
сі. [50.0	/	160.0	J
XAbbrechen Vorgabe Speichern				

Abb. 3-9 Bereiche 1

System>	Einstellung	en>QC		
Bereit	5	17:1	2 21	-Mär
Leve	Bere	Bereiche 1 Bereiche 2		
	Niedrig		Hoch	
Ca++	0.20	1	3.00	2
Glu	30.0	1	400.0	1
BUN	2.8	/	112.0	1
Lac	0.30		17.50	1
tHb	5.0		25.0	
SO2	60.0	1	100.0	1
Abbrechen Vorgabe				
		1		

Abb. 3-10 Bereiche 2

- Die rote Linie des Scanners sollte den gesamten Barcode abdecken.
- Ein Signalton ertönt, und die Statusanzeige leuchtet zur Bestätigung eines gültigen Barcodes grün auf.
- Lesen Sie dann Barcode B ein. Diese beiden Barcodes enthalten alle wichtigen Chargeninformationen für alle Level und können in den nachfolgenden Anzeigen bestätigt werden.
- 6. Bei der Verwendung von OPTI CHECK PLUS wird dann **Barcode C** für den entsprechenden Level eingelesen.
- Bestätigen Sie die Richtigkeit der eingelesenen Informationen (Abb. 3-8). Ist der Barcode beschädigt und lässt sich nicht scannen, drücken Sie auf **<Manueller Barcode>** und geben die Informationen manuell ein. Die manuelle Eingabe der Kontrollbereiche sollte erst nach dem Scannen oder der manuellen Eingabe der Barcode-Informationen erfolgen.
- Drücken Sie auf das Register <Bereiche 1>. Bestätigen Sie die Richtigkeit der zuvor mit Barcode eingelesenen Zielbereiche (Abb. 3-9). Steht kein Barcode zur Verfügung, drücken Sie auf und geben Sie die Werte über die Bildschirmtastatur ein.
- Drücken Sie auf das Register **<Bereiche 2>** und geben Sie hier die Werte für die verbleibenden Messparameter ein (Abb. 3-10).
 - Die Zielbereiche sind auf dem Datenblatt in der OPTI Check Packung angegeben. Sie können auch Ihre eigenen Zielbereiche aus mehreren Messungen in Übereinstimmung mit den geltenden Vorschriften erstellen.
 - Obwohl es sich empfiehlt, die Zielbereiche für alle Parameter zu überprüfen, können Sie nach der Barcode-Eingabe jederzeit
 Speichern drücken, und die eingelesenen Bereiche werden automatisch übernommen.

Um mit dem Programmieren der QC-Einstellungen fortzufahren, wiederholen Sie den oben beschriebenen Vorgang für QC-Level 2 und 3.

3.2.1.2 QC-Sperre einstellen

Abb. 3-11 QC-Sperre

System>Einst	tellungei	n>Sperre	
Bereit	5	17:09	21-Mär
SRC	QC	: Ne	ue Charge
SRC-Sperre	antivier	en	
Level-Sperr	e aktivie	ren	
Nach Level	3	Nach Ar	2 3 C
Zeitraum –			
8h C	12h C	24h (•	7 Tg C
Abbrechen		E	Speichern

Abb. 3-12 SRC-Sperre

Mit diesem Menü kann die Benutzung des Gerätes gesperrt werden, bis eine Qualitätskontrollmessung durchgeführt wird. OPTI Medical empfiehlt die Anwendung aller im Folgenden beschriebenen Optionen. Qualitätskontrollmessungen sollten in Übereinstimmung mit den geltenden Laborvorschriften durchgeführt werden. In der Werkseinstellung sind die Sperrfunktionen deaktiviert. Diese Einstellungen können folgendermaßen geändert werden:

- Im Hauptmenü wählen Sie <System-Manager> und dann <Einstellungen>.
 Wählen Sie <Sperre> auf dem Register
 <Patienten/QC> (Abb. 3-11).
- Das <Sperre>-Menü umfasst 3 Funktionen:
 <SRC>, <QC> und <Neue Charge>.

Option 1:

<SRC-Sperre aktivieren> (Abb. 3-12). Ist diese Funktion aktiviert, müssen SRC-Messungen durchgeführt werden, bevor das Gerät für Patientenmessungen freigegeben wird.

- Soll eine bestimmte Anzahl beliebiger SRC-Level gemessen werden, muss die Option
 <Level-Sperre aktivieren> deaktiviert sein, und die Anzahl der Messungen (1, 2 oder 3) in der Option <Nach Anzahl> gewählt werden.
- Sollen bestimmte Level gemessen werden, wählen Sie <Level-Sperre aktivieren> und die gewünschten Level in der Option <Nach Level>.
- Wählen Sie den Zeitraum, in dem diese Messungen durchgeführt werden sollen: 8, 12, 24 Stunden oder 7 Tage.
- 4. In den Voreinstellungen sind die SRC-Sperren deaktiviert.
- 5. Nach Eingabe der Änderungen drücken Sie
- HINWEIS: Der gewählte Zeitraum beginnt sofort nach Wahl der Option.

Abb. 3-13 QC-Sperre

Option 2:

<QC-Sperre aktivieren> (Abb. 3-13).

Ist diese Funktion aktiviert, müssen QC-Messungen durchgeführt werden, bevor das Gerät für Patientenmessungen freigegeben wird.

- Soll eine bestimmte Anzahl beliebiger QC-Level gemessen werden, muss die Option <Level-Sperre aktivieren> deaktiviert sein, und die Anzahl der Messungen (1, 2 oder 3) in der Option <Nach Anzahl> gewählt werden.
- Sollen bestimmte Level gemessen werden, wählen Sie <Level-Sperre aktivieren> und die gewünschten Level in der Option <Nach Level>.
- Wählen Sie den Zeitraum, in dem diese Messungen durchgeführt werden sollen: 8, 12, 24 Stunden, 7 Tage oder 1 Monat.
- 4. In den Voreinstellungen sind die QC-Sperren deaktiviert.
- 5. Nach Eingabe der Änderungen drücken Sie
- HINWEIS: Der gewählte Zeitraum beginnt sofort nach Wahl der Option.
- HINWEIS: Es besteht die Möglichkeit eine Kombination dieser Funktionen zu aktivieren, die sowohl SRC- als auch Kontrollmittelmessungen (QC) vor der Durchführung von Patientenmessungen erforderlich macht.
- HINWEIS: QC-Sperren richten sich nach den Daten, die in der QC-Datenbank gespeichert sind (siehe Kapitel 4). Diese Datenbank kann Daten beinhalten, die mit jeder beliebigen Kassettencharge oder Kassettenart gemessen wurden.

System>Einst	tellungen	>Sper	re	_	
Bereit	5	17:0	19	21-Mär	
SRC	QC		Neue	Charge	
Neue-Charg	en-Sperr	e akti	vieren	V	K
Level-Sperr	e aktivier	en			
Nach Level		- Nacl	h Anza	hl —	
1 2	3	1	2	3	
			~		
A			EDo		-
Abbrechen				peichern	

Abb. 3-14 Neue Charge

Option 3:

<Neue Chargen-Sperre aktivieren> (Abb. 3-14). Eine Aktivierung dieser Funktion macht Kontrollmessungen bei jeder neuen Kassettencharge erforderlich.

- Soll eine bestimmte Anzahl beliebiger QC-Level gemessen werden, muss die Option <Level-Sperre aktivieren> deaktiviert sein, und die Anzahl der Messungen (1, 2 oder 3) in der Option <Nach Anzahl> gewählt werden.
- Sollen bestimmte Level gemessen werden, wählen Sie <Level-Sperre aktivieren> und die Level (1, 2 und 3) in der Option <Nach Level>.
- 3. In den Voreinstellungen ist diese Option deaktiviert.
- 4. Nach Eingabe der Änderungen drücken Sie
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

3.2.2 Patienteneinstellungen

3.2.2.1 Patienteninformationen einrichten

Abb. 3-15 Patientendaten

Abb. 3-16 Patienteninfo wählen

Abb. 3-17 Patientendaten

Mit dieser Funktion können Sie festlegen, welche Patienteninformationen während der Messung angezeigt und nach der Messung gedruckt werden.

- Im Hauptmenü wählen Sie **<System-Manager** -> Einstellungen>.
- Im <System>Einstellungen>-Menü, im Register <Patienten/QC>, wählen Sie
 <Patientendaten> (Abb. 3-15).

Im **<Patienteninfo>**-Menü (Abb. 3-16) kann eine Liste mit Patienteninformationen eingerichtet werden.

In der oberen Hälfte des Bildschirms werden alle verfügaren Optionen angezeigt. Die untere Hälfte zeigt die für die Liste gewählten Optionen.

- Um der Liste eine neue Option hinzuzufügen, wählen Sie die gewünschte Option im oberen Auswahlfeld **<Verfügbare Funktionen>** (Abb. 3-16). Drücken Sie dann auf den blauen **<Abwärts>**-Pfeil , um diese Option in das untere Feld **<Gewählte Funktionen>** zu verschieben.
- Um Optionen aus der Liste zu entfernen, wählen Sie die gewünschte Funktion im unteren Listenfeld. Drücken Sie auf den blauen
 Aufwärts>-Pfeil , und verschieben Sie diese Option in das obere Auswahlfeld.
- Drücken Sie auf **<Obligatorisch>** (Abb. 3-17) für Patienteninformationen, deren Eingabe erforderlich ist.

Die folgenden Optionen sind werksseitig voreingestellt:

- Patienten-ID (25 alphanumerische Zeichen)
- Auftragsnr. (25 numerische Zeichen)
- Geburtsdatum (Monat, TT, JJJJ)
- Geschlecht (unbekannt, männlich, weiblich)
- Temperatur (Vorgabewert 37,0 °C)

Abb. 3-18 Patienteninformationen

- 4. Benutzen Sie die Bildlaufleiste zur Anzeige der weiteren Optionen (Abb. 3-18).
 - Krankenaktennr. (25 numerische Zeichen) •
 - Kontonr. (25 numerische Zeichen)
 - Test-ID (25 alphanumerische Zeichen) •
 - Patienten-Vorname (25 alphabetische • Zeichen)
 - Patienten-Nachname (25 alphabetische • Zeichen)
 - Alter (0-150)
 - Behandelnder Arzt (25 alphabetische Zeichen) •
 - Patientenstandort (25 alphabetische Zeichen) •
 - Zeit der Probenentnahme (Monat, TT, JJJJ, • HH:MM)
 - Probenart: (Art/Ven/MixVen/Cap/Cord/CPB), • wobei:
 - Art = arteriell
 - Ven = venös
 - MixVen = gemischt venös
 - Cap = Kapillar
 - Schnur = Schnur
 - CPB = kardiopulmonaler Bypass
 - Punktionsstelle (LR/RR/LB/RB/LF/RF/

Schnur/Skalp), wobei:

LR = links radial	RR = rechts radial
LB = links brachial	RB = rechts brachial
LF = links femoral	RF = rechts femoral

- Schnur = Schnur Skalp = Skalp
- Allen-Test (unbekannt, positiv oder negativ)
- tHb-Art (erwachsen oder fetal, Vorgabe erwachsen)
- Bypass (Pump aus oder ein)
- O2 Mode: (Luft/Maske/T-P/NC/Vent/Beut/ Haube/And., wobei:

 - Luft = LuftMaske = Maske
 - T-P = T-Stück
 - NC = Nasenkanüle

 - Vent = Beatmungsgerät
 - Beutel = Beutel (manuelle Wiederbelebung)
 - Haube = Haube
 - And. = Andere
- Vent Mode: (Nein/SIMV/PSV/PCV/CMV-
 - AC/CPAP/PCIVR/BIPAP), wobei:
 - Nein = keine Einstellung
 - SIMV = synchronisierte intermittierende mandatorische Beatmung

- PSV = druckunterstützte Beatmung
- PCV = druckkontrollierte Beatmung

CMV/AC = kontrollierte mechanische Beatmung / assistierte Spontanbeatmung

CPAP = kontinuierliche Beatmung gegen erhöhten Druck

PCIVR = PCIVR-Beatmung

- BIPAP = BIPAP-Beatmung
- Pplat (Vorgabewert 0)
- Mvol (VE) (Vorgabewert 0 L)
- PIP (Vorgabewert 0)
- Flussrate (FR) (Vorgabewert 000,00 Lpm)
- Tvol (VT) (Vorgabewert 0 mL)
- PS (Vorgabewert 0)
- PEEP (Vorgabewert 0)
- Frequenz (f) (Vorgabewert 0 bpm)
- CPAP (Vorgabewert 0)
- tHb (Vorgabewert 15,0 g/dL)
- FIO₂ (Vorgabewert 0,21)
- MCHC (Vorgabewert 33,3%)
- RQ (Vorgabewert 0,84)
- P₅₀ (Vorgabewert 26,7 mmHg)
- Bilevel Druck (Vorgabewert 1,0/1,0)
- I/E Verhältnis (Vorgabewert 0)
- Bemerkungen (50 Zeichen)
- Die gewählten Optionen werden während einer Patientenmessung in der gewählten Reihenfolge angezeigt. Die Reihenfolge der Optionen kann beliebig geändert werden. Wählen Sie dazu die gewünschte Option im unteren Wahlfeld, und drücken Sie auf den **Aufwärts>** oder **Abwärts>** Pfeil neben der Bildlaufleiste (Abb. 3-19), um die Option entsprechend zu verschieben.
- 6. Speichern Sie die Eingaben durch Drücken von
- Zur Rückkehr in die **System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .
- HINWEIS: Sollen Daten exportiert werden, müssen die entsprechenden Parameter gewählt werden. Nicht gewählte Parameter werden weder gedruckt noch exportiert.

Abb. 3-19 Patienteninformationen

3.2.2.2 Ergebnisanzeige deaktivieren

Abb. 3-20 Messwerte

System>Einstellungen>Messwerte					
Bereit	5	17:10	27-Jun		
Parameter	Einstell	ungen Tes	tprofil		
	X				
– Angezeigte Pa	rameter	•			
pН	\checkmark	Ca++			
PCO2	\checkmark	Glu			
P02	\checkmark	Urea/BUN			
Na+	V	Lac			
K+		tHb			
CI-	\checkmark	SO2			
Abbrechen	Vorg	gabe 💾 S	Speichern		

Abb. 3-21 Parameter

System>Eins	tellungen	Mess	werte	
Bereit	5	17:11	2	7-Jun
Parameter	Einstellu	ngen	Test	orofil
– Parameterwa	hl			
Testprofilwahl	zulassen		-	•
Parameterwah	ıl zulassen			0
Weder-noch				0
Letzten Barco	de aktiviere	n		
Letzte Patiente	n-Info aktiv	ieren		
PatID Mindes	tzeichen	0		Į

Abb. 3-22 Einstellungen

Mit dieser Funktion kann die Ergebnisanzeige für bestimmte Messwerte deaktiviert werden. Diese Ergebnisse werden dann während einer Proben- oder Kontrollmessung weder angezeigt noch gedruckt.

• Im Hauptmenü wählen Sie **<System-Manager >Einstellungen>Messwerte>** (Abb. 3-20).

Das Register **<Parameter>** enthält die folgenden Optionen (Abb. 3-21):

 <Angezeigte Parameter> - Mit dieser Option kann die Ergebnisanzeige dauerhaft für alle Patienten- und QC-Messungen für alle Kassettenarten deaktiviert werden. Wählen Sie dazu die gewünschten Parameter aus der Liste ab. In der Vorgabe-Einstellung ist die Eregebnisanzeige für alle Parameter aktiviert.

Das Register **<Einstellungen>** enthält die folgenden Optionen (Abb. 3-22):

- <Testprofilwahl zulassen> ermöglicht die Einstellung kundenspezifischer Testprofile (weitere Informationen siehe Abschnitt 3.2.2.7).
- **<Parameterwahl zulassen>** ermöglicht dem Benutzer die Wahl der zu messenden Parameter nach Beginn der Messung.
- **<Weder-noch>** ist die Vorgabe-Einstellung.
- <Letzten Barcode aktivieren> aktiviert die Schaltfläche <Letzte Eingabe> im Hauptmenü und damit die Möglichkeit, die Informationen der vorherigen Barcode-Eingabe für die aktuelle Messung zu übernehmen. In der Vorgabe-Einstellung ist diese Option deaktiviert.
- <Letzte Patienten-Info aktivieren> aktiviert die Schaltfläche <Letzte Patienten-Informationen> während der Messung und damit die Möglichkeit, die Patientendaten der vorherigen Messung für die aktuelle Messung zu übernehmen. In der Vorgabe-Einstellung ist diese Option deaktiviert.
- **<Pat.-ID Mindestzeichen>**. Mit dieser Option kann eine Mindestanzahl an Zeichen für die Patienten-ID erforderlich gemacht werden.
- Speichern Sie die Eingaben durch Drücken von
 Speichern

3.2.2.3 Testprofile einrichten

Abb. 3-23 Testprofil

System>Einstellungen>Mess Bereit 5 17:11	werte 27-Jun
Parameter Einstellungen	Testprofil
- Paramaterwahi	
Testprofilwahl zulassen	G
Parameterwahl zulassen	0
Weder-noch	0
Letzten Barcode aktivieren	
Letzte Patienten-Info aktivieren	
PatID Mindestzeichen 0	/

Abb. 3-24 Testprofilwahl

Abb. 3-25 Testprofil einrichten

In diesem Menü können Sie kundenspezifische Testprofile einrichten.

Durch die Verwendung kundenspezifischer Testprofile entfällt die Notwendigkeit für den Benutzer bestimmte Testkombinationen immer wieder neu zu wählen. Wird z.B. in Ihrem Institut eine bestimmte Testreihe für die Notaufnahme und eine andere für den OP benötigt, so können Sie für diese speziellen Situationen Profile mit den auf der jeweiligen Kassette verfügbaren Parametern individuell einrichten und benennen.

- Im Hauptmenü wählen Sie <System-Manager>-<Einstellungen>-<Messwerte>. (Abb. 3-23).
- Im Register <Einstellungen> wählen Sie
 <Testprofilwahl zulassen> (Abb. 3-24).
 In der Voreinstellung ist diese Funktion deaktiviert.
 - Ist diese Option aktiviert, erscheint nach Einlesen des Kassetten-Barcodes ein Popup-Fenster mit den zur Verfügung stehenden Testprofilen. Die Messparameter der jeweiligen Kassette stehen zur Verfügung, so lange diese nicht deaktiviert wurden.
 - Es werden nur Testprofile angezeigt, die die auf der Kassette verfügbaren Parameter enthalten. Wird z. B. ein Profil für Na⁺, K⁺ und Ca⁺⁺ erstellt, wird dieses Profil nur für Messkassetten angezeigt, die diese Parameter enthalten.
- 3. Im **<Messwerte>**-Menü wählen Sie das Register **<Testprofil>**.
- 4. Drücken Sie www. zum Erstellen eines neuen Testprofils (Abb. 3-25).

e		ļ
	Ca++	
	Glu	
	Urea/BUN	
	Lac	
	tHb	
	S02	
		Ca++ Glu Urea/BUN Lac Hb SO2

Abb. 3-26 Parameter wählen

Abb. 3-27 Testprofile

- Im nachfolgenden Menü (Abb. 3-26), drücken Sie auf und geben einen Namen für das Profil ein. Wählen Sie dann die gewünschten Parameter für das Profil.
- 6. Drücken Sie auf <u>∞</u> zum Speichern des Testprofils.

- Zum Bearbeiten eines bereits existierenden Profils wählen Sie dieses (Abb. 3-27) und drücken Sie auf .
- Zum Löschen eines Profils drücken Sie Das Vorgabeprofil
 DEFAULT> kann weder bearbeitet noch gelöscht werden.
- Benutzen Sie die <Aufwärts> in und
 <Abwärts> Pfeile, um die Reihenfolge der Profile in der Anzeige zu ändern.
- Mit Hilfe der Schaltflächen **<Vor>** und **<Zurück>** können weitere Seiten mit Profilkonfigurationen, falls vorhanden, aufgerufen werden.
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

3.2.2.4 Rechenwerte einrichten

Abb. 3-28 Rechenwerte

System>Einstellungen>Rechenwerte						
Bereit	NG 17:08 21-Mär					
	Kassettenart					
	В					
	B-60					
Aktivieren	E-CI Aktivieren					
BE 🔽	E-Ca					
tC02 🔽	E NaDO2					
нсоз 🔽	E-Bun D2ct 🗖					
вв 🗖	E-Glu 250(c)					
BEact 🔽	B-Lac 💌					
BEecf 厂	Hot(c) 🔽					
Abbrechen	Vorgabe Speichern					

Abb. 3-29 Parameter wählen

Mit diesem Menü können Sie wählen, welche Rechenwerte für die jeweilige Kassettenart auf dem Messprotokoll gedruckt werden sollen. Die Reihenfolge ist festgelegt, es ist jedoch möglich, bestimmte Rechenwerte auf dem Druckprotokoll ein- oder auszuschließen.

- HINWEIS: In der Anzeige werden jederzeit alle zur Verfügung stehenden Rechenwerte angezeigt werden.
- 1. Im Hauptmenü wählen Sie **<System-**Manager> - **<Einstellungen>**.
- 2. Im **<System->Einstellungen>**-Menü wählen Sie **<Rechenwerte>** (Abb. 3-28).
- 3. Wählen Sie die Kassettenart (Abb. 3-29).
- 4. Wählen Sie die zu druckenden Parameter.
- 5. Speichern Sie die Eingaben durch Drücken von
- 6. Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

3.2.2.5 Eingabe des tHb-Werts

Abb. 3-30 Rechenwerte

System>Einstellungen>Rechenwerte							
Bereit	t	5	17:10	27	'-Jun		
Kassettenart							
	tivieren						
AK	uvieren	AK	livieren	AK	Ivieren		
BE		stHC03		SO2(c)			
tCO2	◄	st.pH	◄	AaDO2	◄		
нсоз	◄	cH+	☑	02ct	◄		
вв	☑	AnGap	•	P50(c)	•		
BEact	◄	nCa++	◄				
BEecf	\checkmark	Hct(c)	◄				
tHb-Aufforderung 🔽							
Abbrechen Vorgabe							

Abb. 3-31 tHb-Eingabe

tHb-Wert eingeben	_
Messwert für tHb r tHb-Wert für Recher	nicht verfügbar. nwerte eingeben.
tHb	g/dL
OK	Überspringen

Abb. 3-32 tHb-Wert eingeben

In diesem Menü kann zur Berechnung der nachstehend aufgeführten Rechenwerte ein tHb-Wert aus externer Quelle eingegegeben werden, wenn die Ergebnisanzeige für den tHb-Wert deaktiviert wurde.

- Basenüberschuss (BE)
- Pufferbasen (BB)
- tatsächlicher Basenüberschuss (BEact)
- Standard-pH (st.pH)
- Standardbikarbonat (st.HCO₃⁻)
- Sauerstoffgehalt (O₂ct)
- 1. Im Hauptmenü wählen Sie **<System-**Manager> - **<Einstellungen>**.
- 2. Im **<System->Einstellungen>**-Menü wählen Sie **<Rechenwerte>** (Abb. 3-30).
 - In der Vorgabe-Einstellung ist die Option zur manuellen Eingabe des tHb-Werts aktiviert. (Abb. 3-31).
 - Ist diese Funktion deaktiviert, benutzt der OPTI CCA-TS2 einen Vorgabewert für die Berechnung der folgenden Parameter: BE (Basenüberschuss), BEact (tatsächlicher Basenüberschuss, st.pH (Standard-pH) und st.HCO₃⁻ (Standardbikarbonat).
 - Ist die Ergebnisanzeige für den tHb-Wert und die Funktion zur manuellen Eingabe des tHb-Werts deaktiviert, muss zur Anzeige von BB (Pufferbasen) und O₂ct (Sauerstoffgehalt) ein tHb-Wert eingegeben werden.
 - Zur Eingabe des tHb-Werts drücken Sie während der Kassetten-Kalibrierung oder Probenmessung auf die Schaltfläche <Patienten-Informationen> und geben den Wert auf Seite 2 des Patientendatenmenüs ein (Abb. 3-32).
- HINWEIS: Die Rechenwerte für BB und O₂ct werden bei B-60 Kassetten nicht erstellt, da der tHb-Wert mit diesen Kassetten nicht gemessen wird und ein gemessener tHb-Wert für die Genauigkeit dieser Parameter erforderlich ist.

3.2.2.6 Messwertbereiche einstellen

Abb. 3-33 Messgrenzen

System>Einstellungen>Messgrenzen							
Bereit	Bereit 😽			17:11 21-Mär			
Referenz			Kritisch				
Aktiviere	n F	2	ĸ				
	Nied	Irig		Но	ch		
рН 🗌	7.20	00	1	7.60	0	1	
PCO2	30.0		1	50.0	כ	Ţ	
P02	70.	0	/	700	0	Ţ	
Na+	135	.0	1	145	0	1	
de Zurüc	:k	Seite	1 von 3		Vor		
Abbreck	nen	Vor	gabe	8	Speic	hern	

Abb. 3-34 Referenzbereiche

System>Einstellungen>Messgrenzen						
Bereit		5	17:1	1	21-Mär	
Ref	erenz		Kritisch			
	Nie	drig	Hoch			
K+	3	.50	1	5.10	1	
CI-	9	5.0	1	115.0	1	
Ca++	1.13		/	1.32	1	
Glu	6	60.0		120.0	1	
BUN	5	.9	1	19.9	1	
🖕 Zurü	ick	Seite 2 von 3 Vor			or	
Abbred	chen	Vorg	gabe	Bs	peich	
	16					

Abb. 3-35 Referenzbereiche 2

In diesem Menü können die Normal- oder Referenzbereiche und kritischen Messbereiche für alle Messwerte eingestellt werden.

Ergebnisse außerhalb der hier eingegebenen Referenzbereiche werden mit einem Aufwärtsoder Abwärtspfeil angezeigt. Werte ausserhalb der kritischen Bereiche werden mit jeweils zwei Pfeilen markiert. Auf dem Druckprotokoll wird zu jedem Pfeil eine Beschreibung angegeben.

- HINWEIS: Falls die Patiententemperatur geändert wurde, werden sowohl die unkorrigierten als auch die korrigierten Werte mit den hier eingestellten Bereichen verglichen und entsprechend angezeigt.
- Im Hauptmenü wählen Sie nacheinander <System-Manager> Einstellungen>Messgrenzen> (Abb. 3-33).
- Im Register <**Referenz>** (Abb. 3-34) wählen Sie den zu ändernden Parameter und drücken Sie auf , um den neuen Wert einzugeben. In der Voreinstellung sind Referenzbereiche aktiviert.
- Drücken Sie auf vor , um Seite 2 und 3 mit den weiteren Parametern aufzurufen (Abb. 3-35).
- 4. Drücken Sie auf Speichern

Die folgenden Referenzbereiche sind voreingestellt:

pH:	7,200 - 7,600
P CO ₂ :	30,0 - 50,0 mmHg
P O ₂ :	70,0 - 700,0 mmHg
Na ⁺ :	135,0 - 145,0 mmol/L
K+:	3,50 - 5,10 mmol/L
Cl ⁻ :	95,0 - 115,0 mmol/L
Ca++:	1,13 - 1,32 mmol/L
Glu:	60,0 - 120,0 mg/dL
Glu:	3,3 - 6,6 mmol/L
BUN:	5,9 - 19,9 mg/dL
Urea:	2,1 - 7,1 mmol/L
Lac:	0,90 - 1,70 mmol/L
tHb:	12,0 - 17,0 g/dL
SO_2 :	90,0 - 100,0 %
_	

Abb. 3-36 Kritische Bereiche

System>Einstellungen>Messgrenzen					
Bereit		5	17:1	1 21	I-Mär
Ref	erenz			Kritisch	
	Nied	rig	н	loch	
K+	0.	80	1	9.99	1
CI-	50	0.0		160.0	1
Ca++	0.	20	1	3.00	1
Glu	30	0.0		400.0	
BUN	2	.8		112.0	1
de Zurü	ick	Seite	2 von 3	Vor	
Abbrechen Vor		gabe	💾 Spe	eic, en	

Abb. 3-37 Kritische Bereiche 2

System>Einstellungen>Messgrenzen				
Bereit	5	17:11	21	Mär
Refe	renz	E F	(ritisch	
N	iedrig	н	och	
Lac	0.30	1	17.50	1
tHb	5.0	1	25.0	1
S02	60.0	1	100.0	1
4				_
Zurüc	k Seite	3 von 3	Vor	
Abbrech	ien Vor	gabe	💾 Spei	chern

Abb. 3-38 Kritische Bereiche 3

- Zum Ändern der Maßeinheiten siehe Kapitel 3.2.4.3.
- HINWEIS: Die im Gerät voreingestellten Bereiche stellen nur allgemeine Richtlinien dar und basieren auf den bei "Tietz, Burtis C, et al (Eds.), Textbook of Clinical Chemistry and Molecular Diagnostics, 4th Ed., (Elsevier Saunders, 2006) pps. 2252-2302" angegebenen Referenzbereichen.
- Drücken Sie auf das Register <Kritisch> (Abb. 3-36) und drücken Sie auf <Aktivieren>.
- 6. Drücken Sie auf *zur* Eingabe der Werte.
- Drücken Sie auf vor wurden weiteren Parametern aufzurufen (Abb. 3-37 und Abb. 3-38).
- 8. Drücken Sie auf Speichern

Im Gerät sind die Messbereiche des OPTI CCA-TS2 voreingestellt:

pH:	6,600 - 7,800
PCO,:	10,0 - 200,0 mmHg
P O,: ²	10,0 - 700,0 mmHg
Na ⁺ :	100,0 - 180,0 mmol/L
K+:	0,80 - 9,99 mmol/L
Cl ⁻ :	50,0 - 160,0 mmol/L
Ca++:	0,20 - 3,00 mmol/L
Glu:	30,0 - 400,0 mg/dL
Glu:	1,7 - 22,0 mmol/L
BUN:	2,8 - 112,0 mg/dL
Urea:	1,0 - 40,0 mmol/L
Lac:	0,30 - 17,50 mmol/L
tHb:	5,0 - 25,0 g/dL
SO ₂ :	60,0 - 100,0 %
	pH: PCO_2 : PO_2 : Na ⁺ : K ⁺ : CI ⁻ : Ca ⁺⁺ : Glu: Glu: BUN: Urea: Lac: tHb: SO_2 :

- Wenn in den Eingabemenüs Werte außerhalb der zulässsigen Bereiche eingegeben werden, erscheint eine Fehlermeldung und der gültige Bereich wird angezeigt.
- 9. Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

3.2.2.7 Rechenwertbereiche einstellen

Abb. 3-39 Rechengrenzen

System>Einstellungen>Rechengrenzen				
Bereit	5	17:0	8 21	-Mär
Refere	nz	P	(ritisch	
Aktivieren		K		
N	iedrig		Hoch	
НСОЗ	18.0	1	23.0	1
BE	-2.0	1	3.0	1
BEecf	-2.0	1	3.0	1
BEact	-2.0	1	3.0	1
Zurück	Seite	1 von 4	Vor	-
Abbrecher	n Vor	gabe	E Spe	ichern

Abb. 3-40 Referenzbereiche 1

System>Einstellungen>Rechengrenzen					
Bereit	5	17:0	8 21-	Mär	
Refe	erenz		(ritisch		
	Niedrig		Hoch		
BB [46.0	1	52.0	1	
tCO2 [22.0	1	29.0	Ţ	
st.HCO3	22.0	1	24.0	Ţ	
st.pH	7.350	1	7.450	Ţ	
SO2(c)	95.0	/	98.0	1	
🖛 Zurüd	k Seite 2	2 von 4	Vor		
Abbrec	hen Vorg	jabe	💾 Speid	en	

Abb. 3-41 Referenzbereiche 2

In diesem Menü können Referenz- und kritische Messbereiche für alle Rechenwerte eingestellt werden. Ergebnisse außerhalb der hier eingegebenen Referenzbereiche werden mit einem Aufwärtsoder Abwärtspfeil angezeigt. Werte ausserhalb der kritischen Bereiche werden mit jeweils zwei Pfeilen markiert. Auf dem Druckprotokoll wird zu jedem Pfeil eine Beschreibung angegeben.

- HINWEIS: Falls die Patiententemperatur geändert wurde, werden sowohl die unkorrigierten als auch die korrigierten Werte mit den hier eingestellten Bereichen verglichen und entsprechend angezeigt.
- Im Hauptmenü wählen Sie nacheinander <System-Manager>Einstellungen> Rechengrenzen> (Abb. 3-39).
- 2. Im Register **<Referenz>** (Abb. 3-40) wählen Sie den gewünschten Parameter und drücken

Sie auf , um den neuen Wert einzugeben. In der Voreinstellung sind die Referenzbereiche aktiviert.

- Drücken Sie auf vor , um Seite 2, 3 und 4 mit den weiteren Parametern aufzurufen (Abb.
 - 3-41). Drücken Sie auf Espeichern

Die folgenden Referenzbereiche sind voreingestellt:

HCO3 ⁻ :	18,0 - 23,0 mmol/L
BE:	-2,0 - 3,0 mmol/L
BE _{ecf} :	-2,0 - 3,0 mmol/L
BE _{act} :	-2,0 - 3,0 mmol/L
BB:	46,0 - 52,0 mmol/L
tCO2:	22,0 - 29,0 mmol/L
st.HCO3-:	22,0 - 24,0 mmol/L
st.pH:	7,350 - 7,450
SO2(c):	95,0 - 98,0 %
O2ct:	15,0 - 23,0 mL/dL
Hct(c):	34,0 - 51,0 %
cH+:	36,0 - 44,0 nmol/L
AaDO2:	5,0 - 20,0 mmHg
AnGap:	10,0 - 20,0 mmol/L
P50:	25,0 - 29,0 mmHg
nCa++:	0,10 - 3,00 mmol/L

System>	Einstellung	jen>Rech	engrenzo	en Mär
Ref	erenz	17.0	Kritisch	
Aktiviere	en 🗖			K
	Niedrig	н	och	
HCO3	1.0	1	200.0	1
BE	-40.0	1	40.0	1
BEecf	-40.0	1	40.0	1
BEact	-40.0	1	40.0	1
🖕 Zurü	ick Seite	e 1 von 4	Vor	
Abbred	chen Vo	orgabe	E Speid	chern

Abb. 3-42 Kritische Bereiche 1

System>Einstellungen>Rechengrenzen			
Bereit	5	17:0	8 21-Mär
Refere	nz	I	(ritisch
Nie	Niedrig		och
вв	0.0	/	100.0
tCO2	1.0		200.0
st.HCO3	1.0	1	200.0
st.pH	6.500	1	8.000
SO2(c)	0.0	1	100.0
🖛 Zurück	Seite	2 von 4	Vor 📕
Abbrechen Vor		gabe	Speichen

Abb. 3-43 Kritische Bereiche 2

System>Einstellungen>Rechengrenzen				
Bereit	5	17:0	8 21-	Mär
Refe	renz	I	(ritisch	
N	liedrig	н	och	
02ct	0.0	/	56.0	1
Hct(c)	15.0	1	75.0	1
cH+	10.0	/	1000.0	Ţ
AaDO2	0.0	/	800.0	Ż
AnGap 🛛	3.0	1	30.0	Ţ
🖛 Zurüc	k Seite	3 von 4	Vor	
Abbrechen Vor		gabe	E Spei	chern
]		

Abb. 3-44 Kritische Bereiche 3

- Zum Ändern der Maßeinheiten siehe Kapitel 3.2.4.3.
- HINWEIS: Die im Gerät voreingestellten Bereiche stellen nur allgemeine Richtlinien dar und basieren auf den bei "Tietz, Burtis C, et al (Eds.), Textbook of Clinical Chemistry and Molecular Diagnostics, 4th Ed., (Elsevier Saunders, 2006) pps. 2252-2302" angegebenen Referenzbereichen.
- Drücken Sie auf das Register <Kritisch> (Abb. 3-42) und drücken Sie auf <Aktivieren>.
- 6. Drücken Sie auf zur Eingabe der Werte.
- Drücken Sie auf vor wum Seite 2, 3 und 4 mit den weiteren Parametern aufzurufen (Abb. 3-43 und Abb. 3-44). Drücken Sie auf Speichern

Im Gerät sind die Messbereiche des OPTI CCA-TS2 voreingestellt:

HCO3 ⁻ :	1,0 - 200,0 mmol/L
BE:	-40,0 - +40,0 mmol/L
BE _{ecf} :	-40,0 - +40,0 mmol/L
BE _{act} :	-40,0 - +40,0 mmol/L
BB:	0,0 - 100,0 mmol/L
tCO2:	1,0 - 200,0 mmol/L
st.HCO3 ⁻ :	1,0 - 200,0 mmol/L
st.pH:	6,500 - 8,000
SO2(c):	0,0 - 100,0 %
O2ct:	0,0 - 56,0 mL/dL
Hct(c):	15,0 - 75,0 %
cH ⁺ :	10,0 - 1000,0 nmol/L
AaDO2:	0,0 - 800,0 mmHg
AnGap:	3,0 - 30,0 mmol/L
P50:	15,0 - 35,0 mmHg
nCa++:	0,10 - 3,00 mmol/L

- Wenn in den Eingabemenüs Werte außerhalb der zulässsigen Bereiche eingegeben werden, erscheint eine Fehlermeldung und der gültige Bereich wird angezeigt.
- 8. Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

3.2.2.8 Probenbehälter wählen

System>Einstellungen				
Bereit 🖞	5 15:0	1 01-Feb		
Patienten/QC	Schutz	System		
QC Sperre				
Patienten-Info	rmationen einste	llen		
Patienten- daten	Messwerte	Rechen- werte		
Mess- Grenzen	Rechen- Grenzen	Proben- behälter		
Korrelation				

Fig. 3-45 Probenbehälter

System>Einstellungen>Probenbehälter					
Bereit 🖞	5	15:01	01-Feb		
Drohenhel					
Frobenber		JIC CCA	wanten		
Spritze			0		
Kapillare			0		
Probenröhrchen ©					
Abbrechen	Vorgat	e E	Speichern		

Fig. 3-46 Probenbehälter wählen

In diesem Menü können Sie die zur Probeneingabe verwendeten Probenbehälter wählen (nur bei E-Lyte CCA Kassetten).

- 1. Im Hauptmenü wählen Sie **System-**Manager> Einstellungen>.
- 2. Im **<System->Einstellungen>**-Menü wählen Sie **<Probenbehälter>** im Register **<Patienten/QC>** (Abb. 3-45).

- 3. Wählen Sie den gewünschten Probenbehälter (Fig. 3-46).
- 4. Speichern Sie die Eingaben durch Drücken von

Sie haben auch die Möglichkeit, den Probenbehälter während der Kalibrierung zu wählen.

 Zur Rückkehr in die **System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

3.2.2.9 Korrelationsfaktoren einstellen

Abb. 3-47 Korrelation

System>Einstellungen>Korrelation				
Bereit	5	17:08 21-Mär		
Faktoren 1		Faktoren 2		
Steigung Offset			ffset	
pН	1.000	. 0.	000 🗾	
PCO2	1.000	/ (0.0	
P02	1.000	/ (0.0	
Na+	1.000	/	0.0	
K+	1.000	/ 0	.00	
CI-	1.000	/	0.0	
XAbbrechen Vorgabe Speichern				

Abb. 3-48 Korrelationsfaktoren 1

Abb. 3-49 Korrelationsfaktoren 2

Mit Hilfe von Korrelationsfaktoren können die mit dem OPTI CCA-TS2 erhaltenen Ergebnisse mit anderen Blutgasanalysatoren korreliert werden. Korrelationsfaktoren stehen für alle Parameter zur Verfügung.

- HINWEIS: Die Steigung ist ein multiplikativer und der Achsenabschnitt ein additiver Faktor (siehe folgende Formel): Korrelationswert = Originalwert * Steigung + Achsenabschnitt (Offset)
- Im Hauptmenü wählen Sie nacheinander <System-Manager>Einstellungen> Korrelation> (Abb. 3-47).
- Wählen Sie die zu ändernden Werte durch Drücken von und geben Sie die neuen Werte ein (Abb. 3-48).
- 4. Drücken Sie auf **<Faktoren 2>**, um in das nächste Menü zu gelangen (Abb. 3-49).
- 5. Bei Eingabe des Achsenabschnitts kann mit Hilfe der +/- Schaltflächen angegeben werden, ob dieser Wert additiv oder subtraktiv ist.
- HINWEIS: Die Werkseinstellung ist 1.000 für die Steigung und 0.0(00) für den Achsenabschnitt. Damit werden die Korrelationsfaktoren deaktiviert.
- 6. Geben Sie dann die Korrelationsfaktoren für die weiteren Parameter ein.
- Akzeptieren Sie die Eingaben durch Drücken von Speichern.
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .
- HINWEIS: Da die Eingabe von Korrelationsfaktoren zu einer Änderung der Messergebnisse führt, ist bei der Eingabe der Werte Vorsicht geboten. Führen Sie 10 Vergleichsmessungen zwischen dem OPTI CCA-TS2 und dem zu korrelierenden Gerät zur Bestätigung der geänderten Einstellungen durch.

3.2.3 Systemschutz einstellen

Abb. 3-50 Systemschutz

3.2.3.1 Sicherheitseinstellungen

Abb. 3-51 Einstellungen

Abb. 3-52 Anmelden

Der OPTI CCA-TS2 hat drei Systemschutzfunktionen (Abb. 3-50):

- **<Einstellungen>** Enthält verschiedene Sicherheitsfunktionen, wie z. B. Benutzer-ID und Benutzergruppen (Abschnitt 3.2.3.1).
- **<Passwort ändern>** Mit dieser Funktion kann das Passwort nach Benutzeranmeldung geändert werden (Abschnitt 3.2.3.2).
- <Reinitialisierung> Mit dieser Funktion kann die Datenbank gelöscht und das System auf die Vorgabe-Einstellungen zurückgesetzt werden (Abschnitt 3.2.3.3).
- 1. Im Hauptmenü wählen Sie **<System-**Manager> - **<Einstellungen>**.
- 2. Im **<System->Einstellungen>**-Menü drücken Sie auf das Register **<Schutz>** (Abb. 3-50).

Das **<Einstellungen>**-Menü enthält die folgenden Register:

- **<Einstellungen>** mit verschiedenen Sicherheitseinstellungen.
- **<Benutzer>** zum Einrichten von Benutzer-Identifikationen.
- **<Gruppen>** zum Einrichten von Benutzergruppen.
- 1. Im Hauptmenü wählen Sie **<System-**Manager> - **<Einstellungen>**.
- 2. Im **<Schutz>**-Register drücken Sie auf **<Einstellungen>** (Abb. 3-51).
- Sie werden dann aufgefordert, Benutzer-ID und Passwort einzugeben (Werkseinstellung ADMIN/ ADMIN) (Abb. 3-52).

3.2.3.1.1 Sicherheitseinstellungen

System>Einstellungen>Schutz				
Nicht bereit 😼 12:33 10-Dez				
Einstellungen	Benutzer	Gruppen		
Benutzer-ID	Eingabe			
Kein	-			
Nicht gesch		_		
Geschützt		-		
Ablaufdatum	aktivieren			
Login Timeo	ıt (Minuten)	0		
Abbrechen	Vorgabe	P Speichern		

Abb. 3-53 Einstellungen

System>Einstellungen>Schutz					
Nicht bereit	icht bereit 😽 12:33 10-Dez				
Einstellungen	Benutzer	Gruppen			
Benutzer-ID	Eingabe				
Nicht gesch	nützt				
Passwort ak	tivieren				
Ablaufdatum	aktivieren				
Login Timeout (Minuten)					
Abbrechen	Vorgabe	P Speichern			

Abb. 3-54 Nicht geschützte Benutzer-ID

System>Einstellungen>Schutz					
Nicht bereit 😽 12:34 10-Dez					
Einstellungen	Benutzer	Gruppen			
Benutzer-ID Eingabe Geschützt					
Passwort ak	tivieren				
Ablaufdatum aktivieren 🕅					
Login Timeout (Minuten)					
Abbrechen Vorgabe					
		8			

Abb. 3-55 Geschützte Benutzer-ID

Das **<Einstellungen>**-Menü (Abb. 3-53) enthält verschiedene Sicherheitsfunktionen.

- Um alle Sicherheitsfunktionen zu deaktivieren, wählen Sie **<Keine>** in der Auswahlliste der Funktion **<Benutzer-ID Eingabe>** (Abb. 3-53). In dieser Einstellung ist nur für die folgenden Menüs die Eingabe von Benutzer-ID und Passwort erforderlich: Fset (Werkseinstellungen), Zeit/Datum und Sicherheitseinstellungen. Die Voreinstellungen für diese Funktionen sind **ADMIN/ADMIN**.
- In der Systemvorgabe ist für das Schutzmenü die Einstellung <Nicht geschützt> aktiviert (Abb. 3-54). In dieser Einstellung ist die Eingabe einer Benutzer-ID für Patienten-, QC- und Kalibratormessungen und zur Durchführung von Wartungsaktionen erforderlich. Die Benutzer-ID ist nicht mit einem Passwort geschützt und erfordert keine Gruppenzugehörigkeit. Bestimmte Funktionen, wie z. B. die Zeit/ Datum- und Sicherheitseinstellungen sind weiterhin mit dem ADMIN-Passwort geschützt.
- Mit Wahl der Funktion <Geschützt> (Abb. 3-55) können Passwortschutz und Benutzergruppen mit bestimmten Privilegien eingerichtet werden.

Ist diese Funktion aktiviert, müssen sich Benutzer vor Betrieb des Gerätes anmelden. Der OPTI überprüft die Anmeldung und gewährt Zugriff auf die Funktionen, zu deren Ausführung der Benutzer berechtigt ist. Eine Anmeldung kann mit Benutzer-ID ohne Passwort erfolgen.

Die Benutzer-ID kann über den Barcode-Scanner eingegeben werden. Nach der Anmeldung wird die Benutzer-ID automatisch bei allen durchgeführten Aktionen angegeben.

 Die Benutzer-ID kann durch Wahl der Funktion <Passwort aktivieren> mit Passwort geschützt werden. Beim ersten Anmelden muss dann ein Passwort eingegeben werden (Vorgabe PASSWORD). Danach ist die Eingabe von Benutzer-ID und Passwort erforderlich.

System>Einstellungen>Schutz				
Nicht bereit	S 12:	34 10-Dez		
Einstellungen	Benutzer	Gruppen		
Benutzer-ID I Geschütz	Eingabe			
Passwort ak	tivieren			
Ablaufdatum	aktivieren			
Login Timeou	rt (Minuten)			
Abbrechen	Vorgabe	E Speichern		
		8		

Abb. 3-56 Ablaufdatum

- **<Ablaufdatum aktivieren>** (Abb. 3-56) -Mit dieser Funktion kann für eine Benutzer-ID ein Ablaufdatum eingerichtet werden.
- <Login Timeout> (Abb. 3-56) -Die Abmeldung vom System kann über die Schaltfläche Steiner rechts unten im Bildschirm erfolgen. Mit der Funktion
 <Login Timeout> kann jedoch auch ein automatisches Abmelden nach einer bestimmten Leerlaufzeit des Gerätes eingestellt werden. Zum Deaktivieren dieser Funktion geben Sie als Login-Timeout 0 ein.

3.2.3.1.2 Benutzer-Identifikationen einrichten

Abb. 3-57 Einstellungen

System>Einstellungen>Schutz		
Nicht bereit 🖏 12:34 10-Dez		
Einstellungen Benutzer	Gruppen	
Benutzer	Ablaufdat.	
1234	31-Jon-14	
5678	31-Jan-14	
ADMIN	N/A	
• / 💼 • 🗄		

Abb. 3-58 Benutzer

Im **<Benutzer>**-Menü können Benutzer-Identifikationen eingerichtet werden.

- 1. Im Hauptmenü wählen Sie **System-**Manager>Einstellungen>Schutz>.
- 2. Im **<Schutz>**-Register wählen Sie **<Einstellungen>** (Abb. 3-57).
- 3. Wählen Sie **<Benutzer>** (Fig. 3-58).

Die Vorgabe-Benutzer-ID ist **ADMIN**. Die **ADMIN** Benutzer-ID hat kein Ablaufdatum und kann weder gelöscht noch geändert werden

Das Vorgabe-Passwort für die **ADMIN** Benutzer-ID ist **ADMIN**. Zum Ändern des Passworts melden Sie sich als **ADMIN** an und drücken Sie auf **<Passwort ändern>** im **<Schutz>**-Register (s. Abschnitt 3.2.3.2).

- HINWEIS: Wenn Sie die ADMIN Benutzer-ID nicht benutzen möchten, können Sie eine weitere Benutzer-ID mit ADMIN-Rechten erstellen.
- Zur Eingabe einer neuen Benutzer-ID drücken Sie auf (Fig. 3-58). Das Gerät kann bis zu 300 Benutzer-Identifikationen speichern.

Benutzerinf	formationen
Ben-ID	
1234	1
Ablaufdatum	
31-Jan-14	1
Gruppe	
USE	R
Pass zurück:	wort setzen
Abbrechen	ок

Abb. 3-59 Benutzerinformationen

Abb. 3-60 Benutzer

- Im Menü <Benutzerinformationen> (Abb. 3-59) drücken Sie auf , und geben Sie die Benutzer-ID ein (bis zu 25 Zeichen).
- Ist im Einstellungsmenü die Funktion
 Ablaufdatum> aktiviert, geben Sie ein Ablaufdatum für die Benutzer-ID ein.
- Sind im Gerät bereits <Benutzergruppen> eingerichtet, kann der Benutzer jetzt einer Gruppe zugeordnet werden. Bestehen noch keine Gruppen, kann die Gruppenzugehörigkeit nach dem Erstellen der Gruppen eingerichtet werden (s. Abschnitt 3.2.3.1.3).

Beim ersten Anmelden mit einer neuen Benutzer-Identifikation muss ein Passwort eingerichtet werden (s. Abschnitt 3.2.3.2).

8. Zum Bearbeiten einer bestehenden Benutzer-ID wählen Sie diese an (Abb. 3-60) und drücken auf

Drücken Sie auf **< Passwort zurücksetzen>** (Abb. 3-59), um das Passwort zurückzusetzen.

- Zum Löschen einer Benutzer-ID wählen Sie diese an, und drücken Sie auf .
- 10. Mit der Schaltfläche können alle Eingaben gewählt werden.
- 11. Zum Drucken aller im System gespeicherten Benutzer-Identifikationen drücken Sie auf
- 12. Mit Hilfe der Schaltflächen **Vor>** und **Zurück>** können weitere Seiten mit Benutzer-Identifikationen aufgerufen werden.

3.2.3.1.3 Benutzergruppen einrichten

Abb. 3-61 Gruppen

Abb. 3-62 Gruppenfunktionen

Abb. 3-63 Funktionen

Im **<Gruppen>**-Menü können Benutzergruppen mit bestimmten Gruppenberechtigungen eingerichtet werden.

1. Wählen Sie **<Gruppen>** im Menü **<System> Einstellungen>Schutz>** (Abb. 3-61).

Im System sind 2 Benutzergruppen voreingestellt:

- Die **ADMIN**-Gruppe hat Zugriff auf alle Gerätefunktionen mit Ausnahme der Werkseinstellungen (Fset). Diese Gruppe kann weder geändert noch gelöscht werden, es können dieser Gruppe jedoch weitere Benutzer hinzugefügt werden.
- Eine weitere Voreinstellung ist die **USER**-Gruppe, die bearbeitet oder gelöscht werden kann.
- Zur Eingabe einer neuen Benutzergruppe drücken Sie auf im oberen Gruppen-Wahlfeld (Abb. 3-61).
- Im nächsten Bildschirm (Abb. 3-62) drücken Sie auf und geben einen Namen für die Benutzergruppe ein. Drücken Sie auf
- 4. Zur Zuweisung von Gruppenfunktionen für diese Gruppe drücken Sie auf **<Funktionen>**.
 - Das obere Wahlfed im Menü **<Gruppenfunktionen wählen>** (Abb. 3-63) zeigt alle verfügbaren Funktionen an, das untere Feld zeigt die gewählten Funktionen.
- Um eine neue Gruppenfunktion hinzufügen, wählen Sie die gewünschte Funktion im oberen Auswahlfeld (Abb. 3-63). Drücken Sie dann auf den blauen <Abwärts>-Pfeil , um diese Funktion in das untere Feld zu verschieben.

Die voreingestellten Gruppenfunktionen sind:

Patientenmessung QC-Messung SRC-Messung tHb-Kalibrator Wartung durchführen QC einstellen

Abb. 3-64 Funktionen

Abb. 3-65 Benutzergruppen

6. Benutzen Sie die Bildlaufleiste (Abb. 3-64) zur Anzeige der weiteren Funktionen:

Daten löschen Zeit und Datum Patientendaten einstellen Messwerte einstellen Rechenwerte einstellen Testprofile einstellen Messgrenzen einstellen Rechengrenzen einstellen Korrelationsfaktoren einstellen Maßeinheiten einstellen Hardware einstellen Ethernet einstellen Kommunikation einstellen QC-Sperren einstellen Sprache einstellen Drucker einstellen Wartung einstellen Systemschutz einstellen **B-Lac einstellen**

- Um Optionen aus der Liste zu entfernen, wählen Sie die gewünschte Funktion im unteren Listenfeld. Drücken Sie auf den blauen
 Aufwärts>-Pfeil , und verschieben Sie diese Option in das obere Auswahlfeld.
- 8. Drücken Sie auf <u>∞</u> zum Speichern der Eingaben.
- 9. Um einer Gruppe neue Benutzer hinzuzufügen, drücken Sie im **<Benutzer>-**Wahlfeld im unteren Teil des Bildschirms (Fig. 3-65).
- 10. Um einen Benutzer aus einer Benutzergruppe zu löschen, wählen Sie diesen an und drücken Sie auf .
- 11. Zum Bearbeiten einer Benutzergruppe wählen Sie die Gruppe im oberen **<Gruppen>-**Wahlfeld und drücken auf zur Eingabe der Änderungen.
- 12. Zum Löschen einer Benutzergruppe wählen Sie diese und drücken auf
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

3.2.3.2 Passwort einstellen

System>Einstellungen				
Nicht bereit	5	12:33	10-Dez	
Patienten/QC	Sch	utz	System	
Passw änder	Reinitiali	Einste	ellungen	

Abb. 3-66 Passwort ändern

Abb. 3-67 Passwort eingeben

Der OPTI CCA-TS2 hat eine Passwortfunktion, die aktiviert werden kann, um die Eingabe eines Passworts für die Anmeldung erforderlich zu machen.

Die Voreinstellung für Passwort und Benutzer-ID ist **ADMIN**. Das werkseingestellte Passwort kann auf jede beliebige Zahlen-/Buchstabenkombination geändert werden (bis zu 25 alphanumerische Zeichen).

- Zur Änderung des Vorgabe-Passworts wählen Sie im Hauptmenü <System-Manager> und <Einstellungen>.
- 2. Im Register **<Schutz>** drücken Sie auf die Schaltfläche **<Passwort ändern>** (Abb. 3-66).
- HINWEIS: Die Schaltfläche <Passwort ändern> ist nur aktiv, wenn die Funktionen <Geschützte Benutzer-ID> und <Passwort> aktiviert sind (siehe Abschnitt 3.2.3.1.1) und der Benutzer angemeldet ist.
- 3. Drücken Sie auf und geben Sie das neue Passwort ein (Fig. 3-67).
- Geben Sie das Passwort erneut ein, und drücken Sie auf or zum Speichern des neuen Passworts.
- HINWEIS: Das Passwort sollte vertraulich behandelt und an einem sicheren Ort hinterlegt werden. Passwörter können nicht zurückgewonnen werden.
- 5. Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

3.2.3.3 System reinitialisieren

Abb. 3-68 Reinitialisierung

Abb. 3-69 Reinitialisieren

Bei der Reinitialisierung des Systems werden alle Systemeinstellungen auf die werkseingestellten Vorgabewerte zurückgesetzt und alle gespeicherten Patienten- und QC-Werte gelöscht.

Es ist daher wichtig, vor der Reinitialisierung alle wichtigen Daten zu speichern.

Die Gerätekonfiguration kann auf ein USB-Gerät exportiert und nach der Reinitialisierung wieder in das Gerät zurückgeladen werden (s. Abschnitt 6.4.2).

Damit können alle wichtigen Systemeinstellungen wie z. B. Benutzer-ID und Gruppen wieder hergestellt werden.

- 1. Im Hauptmenü wählen Sie **System-**Manager> und **Einstellungen>**.
- 2. Im Menü **<Systemeinstellungen>** Schutz> drücken Sie auf die Schaltfläche **<Reinitialisierung>** (Abb. 3-68).
- 3. Geben Sie Benutzer-ID und Passwort **ADMIN** ein.
- 4. Eine Warnmeldung erscheint (Abb. 3-69) und gibt ihnen die Möglichkeit, den Vorgang abzubrechen. Drücken Sie auf **<Weiter>,** um mit der Reinitialisierung fortzufahren.
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

3.2.4 Verschiedene Systemeinstellungen

3.2.4.1 Drucker einstellen

Abb. 3-70 Drucker

System>Einstellungen>Drucker				
Nicht bereit	No 02:23 17-Dez			
Einstellungen	Kopfzeile	Konfig	uration	
Protokolle	X	Exer	nplare	
	Antivieren	1	2	
Patienten		•	0	
QC		œ	0	
SRC		œ	0	
Kalibrierprotokoll anhängen				
Referenzbereiche anzeigen				
Kritische Berei	che anzeigen			
Abbrechen	Vorgabe	Bs	peichern	

Abb. 3-71 Einstellungen

Mit dem **<Drucker**-Menü können Sie die Druckerfunktionen des Analysators einstellen.

Das **<Drucker>**-Menü enthält die folgenden Untermenüs: **<Einstellungen>**, **<Kopfzeile>** und **<Konfiguration>**.

- 1. Im Hauptmenü wählen Sie **System-**Manager> und **Einstellungen>**.
- Im <System>Einstellungen>-Menü drücken Sie auf das Register <System> und dann auf <Drucker> (Abb. 3-70).

Das Register **<Einstellungen>** (Abb. 3-71) gibt Ihnen die Möglichkeit, den Ausdruck eines Protokolls nach jeder Patienten-, QC- und SRC-Messung zu wählen. Diese Funktion ist in der Voreinstellung aktiviert.

Es besteht auch die Möglichkeit, dem Messprotokoll ein Kalibrierprotokoll und die Angabe der Referenzund kritischen Bereiche hinzuzufügen.

Mit einer weiteren Option kann die Anzahl der zu druckenden Exemplare festgelegt werden.

- 1. Wählen Sie die gewünschten Optionen.
- 2. Drücken Sie auf Speichern, um die Eingaben zu speichern.
- 3. Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .
- HINWEIS: Um kritische und Referenzbereiche drucken zu können, müssen diese im Menü <Messgrenzen> konfiguriert werden (s. Abschnitt 3.2.2.5)

Abb. 3-72 Kopfzeile

System>Einst	ellunger	i>Dru	cker		
Nicht bereit	5	No. 02:23 17-Dez		Dez	
Einstellungen	Kopfz	eile	Kon	figura	tion
Drucker-Star	ndort —				R
Geräte-	Externer		Beide		2
G	Drucker Drucke				
Druckerport			6700		Ţ
Drucker- IP-Adresse		(0.0.0.	כ	1
Abbrechen	Vorga	abe	8	Speic	hern

Abb. 3-73 Konfiguration

Im Register **<Kopfzeile>** (Abb. 3-72) kann auf den Druckprotokollen eine Kopfzeile eingefügt werden.

- Wählen Sie **<Personalisierte Kopfzeile** aktiveren>, drücken Sie auf und geben Sie den Text für die Kopfzeile ein.
- 2. Drücken Sie auf Speichern, um die Eingaben zu speichern.

Der OPTI CCA-TS2 kann an einen externen Drucker mit Netzwerkanbindung angeschlossen werden.

- Drücken Sie auf den Registerreiter
 Konfiguration> (Abb. 3-73) und wählen Sie die gewünschte Druckereinstellung.
- 2. Wählen Sie **<Externer Drucker>** oder **<Beide Drucker>**.
- Geben Sie den **<Druckerport>** ein. Wenn Sie diesen Wert nicht kennen, wenden Sie sich bitte an Ihren Netzwerkadministrator.
- Geben Sie die **<Drucker-IP-Adresse>** ein. Wenn Sie diesen Wert nicht kennen, wenden Sie sich bitte an Ihren Netzwerkadministrator.
- 5. Drücken Sie auf Speichern, um die Eingaben zu speichern.
- Zur Rückkehr in die **System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

3.2.4.2 Maßeinheiten einstellen

Abb. 3-74 Einheiten

System>Einstellung	en>Maßeinheiten
Bereit 😽	17:14 21-Mär
System	Parameter
Luftdruck/ Partialdruck	mmHg mbar/kPa
- until until until	C F
Temperatur	0 0
	Niedrig Hoch
Auriosung	0 0
Abbrechen Vo	rgabe 💾 Speichern

Abb. 3-75 System

Mit diesem Menü können die Maßeinheiten für Druck, Temperatur, Gesamt-Hämoglobin, Ca, Glu, Urea/BUN, Lac und Anzeige-Auflösung geändert werden.

- 1. Im Hauptmenü wählen Sie **<System-**Manager> - <Einstellungen>.
- 2. Im **<System->Einstellungen>**-Menü wählen Sie das Register **<System>**.
- 3. Im Register **<System>** drücken Sie auf <Einheiten> (Abb. 3-74).
- 4. Im Register **<System>** wählen Sie die Maßeinheiten für die angezeigten Parameter (Abb. 3-75).
- 5. Mit der Option **<Auflösung>** kann die Anzahl der Dezimalstellen für die Messwerte gewählt werden.
- HINWEIS: Diese Auswahlmöglichkeit gilt nur für Patientenergebnisse. Kontroll- und *SRC-Ergebnisse werden immer in hoher* Auflösung angezeigt. In der Vorgabe-Einstellung werden Patientenergebnisse in hoher Auflösung angezeigt und gedruckt.

Beispiele für die Auflösung werden in der nachfolgenden Tabelle gezeigt:

Niedrig

Hoch

- pH 7,34 pH 7,341 pCO₂ 43 mmHg pCO₂ 43,2 mmHg pO₂ 87 mmHg pO₂ 86,8 mmHg • Na^{+} 143 mmol/L Na^{+} 143.3 mmol/L • K^+ 4,6 mmol/L K^+ 4,57 mmol/L • Ca⁺⁺ 1,21 mmol/L Ca++ 1,21 mmol/L • Cl⁻ 103 mmol/L Cl⁻ 103,1 mmol/L • Glu 100,5 mg/dL Glu 100,5 mg/dL • BUN 18,5 mg/dL BUN 18,5 mg/dL • Lac 14,51 mg/dL Lac 14,51 mg/dL • tHb 14,6 g/dL tHb 14,6 g/dL • SO, 99,8 %
- SO, 99 % •
 - Gebrauchsansweisung OPTI CCA-TS2

Abb. 3-76 Parameter

 Drücken Sie auf das Register **<Parameter>**, um den nächsten Bildschirm aufzurufen (Abb. 3-76), und wählen Sie die Maßeinheiten für die weiteren Parameter.

Die Werkseinstellungen sind wie folgt:

- Luftdruck/Partialdruck mmHg
- Auflösung hoch
- Temperatur °C
- tHb g/dL
- Ca⁺⁺ mmol/L
- Glucose mg/dL
- Urea/BUN mg/dL
- Laktat mmol/L
- Nach Wahl der Einheiten akzeptieren Sie diese durch Drücken von Speichern.
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

3.2.4.3 Sprache einstellen

System>Einst Bereit	ellungen 5 17:1	2 21-Mär
atienten/QC	Schutz	System
Drucker	Einheiten	Sprache
Hardware	Komm	Ethernet

Abb. 3-77 Sprache wählen

Abb. 3-78 Sprache wählen

Mit diesem Menü kann die Betriebssprache des OPTI CCA-TS2 gewählt werden.

- 1. Im Hauptmenü wählen Sie **<System-**Manager> - **<Einstellungen>**.
- Im **System->Einstellungen>**-Menu wählen Sie **Sprache>** im Register **System>** (Abb. 3-77).

- 3. Wählen Sie die gewünschte Sprache (Abb. 3-78).
- 4. Akzeptieren Sie die Änderungen durch Drücken von Speichern.
- Zur Rückkehr in die **System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

3.2.4.4 Hardware-Einstellungen

Im **<Hardware>**-Menü kann der örtliche Luftdruck, Signalton und der Standby-Mode eingestellt werden.

3.2.4.4.1 Luftdruck eingeben

Abb. 3-79 Hardware

System>Einste	llungen>H	lardwar	e
Bereit	5	17:09	21-Mär
Luftdruck- ausgleich 0. Audio	Aktuell 0 mmHq	Offset 0.0	3
Signalton aktiv	ieren	•	
Lautstärke		Hoch (•	Niedrig C
Batterie			
Standby aktivi	eren Sh	utdowr	aktivieren
		I	
Standby Time	eout SI	l nutdowi	n Timeout
Standby Time	eout SI	utdowi 30	n Timeout
Standby Time	eout SI] Vorgabe	nutdown 30	n Timeout

Abb. 3-80 Luftdruck eingeben

Der Luftdruck wird folgendermaßen eingestellt:

- 1. Im Hauptmenü wählen Sie **<System-**Manager> - **<Einstellungen>**.
- Im **System->Einstellungen>**-Menü wählen Sie **Hardware>** im Register **System>** (Abb. 3-79).

- 3. Im **<Hardware>**-Menü drücken Sie auf zur Korrektur des Luftdrucks (Abb. 3-80).
- Geben Sie die Abweichung (Offset) vom wahren Luftdruckwert ein, und drücken Sie auf
 Speichern zum Akzeptieren des Werts.
- Zur Rückkehr in die **System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .
- HINWEIS: Vergewissern Sie sich, dass hier der absolute und nicht der höhenkorrigierte Luftdruck verwendet wird.
- HINWEIS: Anweisungen zum Ändern der Maßeinheiten finden Sie in Abschnitt 3.2.4.2.
- HINWEIS: Der Luftdruck sollte regelmäßig überprüft werden.

3.2.4.4.2 Signalton einstellen

System>Einst	ellungen	>Hardwa	re
Bereit	5	17:09	21-Mär
Luftdruck- ausgleich (Audio	Aktuell I.0 mmHq	Offset 0.0	1
Signalton akti	vieren	•	
Lautstärke		Hoch (C	Niedrig O
- Batterie			
Standby aktiv	ieren	Shutdow	n aktivierer
Standby Tim	eout	Shutdov	n Timeout
1	2	30	Ţ
Abbrechen	Vorga	be	Speichern

Abb. 3-81 Signalton aktivieren

Mit diesem Menü kann die Lautstärke des Signaltons eingestellt werden.

- 1. Im Hauptmenü wählen Sie **<System-**Manager> - **<Einstellungen>**.
- 2. Im **<System->Einstellungen>**-Menü wählen Sie **<Hardware>** im Register **<System>**.
- 3. Im **<Hardware>**-Menü wählen Sie **<Signalton aktivieren>** (Abb. 3-81).
- 4. Wählen Sie **<Hoch>** oder **<Niedrig>** für die **<Lautstärke>**.
- 5. Speichern Sie die Eingaben durch Drücken von
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

3.2.4.4.3 Standby-Mode einstellen

Abb. 3-82 Standby

Dieses Menü enthält Stromsparfunktionen, um die Lebensdauer der Batterie zu verlängern. Diese Funktionen sind nur bei Batteriebetrieb aktiv.

- 1. Im Hauptmenü wählen Sie **<System-**Manager> - **<Einstellungen>**.
- 2. Im **<System->Einstellungen>**-Menü wählen Sie **<Hardware>** im Register **<System>**.
- 3. Die **<Batterie>**-Einstellung enthält die folgenden Optionen (Abb. 3-82):
 - **<Standby aktivieren>** Ist diese Funktion aktiviert, schaltet das Gerät automatisch nach der hier gewählten Leerlaufzeit (Minuten) in den Standby-Betrieb.
- HINWEIS: Im Standby-Betrieb verdunkelt sich der Bildschirm. Durch Druck auf den Tastbildschirm kann das Gerät vom Standby-Modus wieder in den Normalbetrieb geschaltet werden.
 - **<Shutdown aktivieren>** Ist diese Funktion aktiviert, schaltet sich das Gerät automatisch nach der hier gewählten Leerlaufzeit (Minuten) aus, um Strom zu sparen. Zum Wiedereinschalten muss dann die Einschalttaste gedrückt werden.
- 4. Speichern Sie die Eingaben durch Drücken von
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

3.2.4.5 Kommunikationseinstellungen

Bereit	- S	17:12	21-Mär
atienten/QC	Sch	utz	System
Drucker	Einh	eiten	Sprache
Hardware	Komm		Ethernet
		R	

Abb. 3-83 Kommunikation

Abb. 3-84 Protokoll wählen

System>Ei	nstellunge	en>Komi	munikat	ion
Bereit	5	17:08	3 21	-Mär
Protokoli	[ASCI	l seriell	
Abbrech	en Vor	gabe	💾 Spe	ichern

Abb. 3-85 ASCII seriell

Der OPTI CCA-TS2 verfügt über einen USB-Anschluss Typ B für serielle Kommunikation und einen Ethernet-Anschluss zur Kommunikation mit einem Computer. Diese Anschlüsse können zur Datenübertragung im ASCII-, ASTM- oder POCT1-Format gewählt werden. Das Gerät verfügt weiterhin über einen USB-Anschluss Typ A, der zum Datenexport auf ein Massenspeichergerät gewählt werden kann.

- 1. Im Hauptmenü wählen Sie **<System-**Manager> - **<Einstellungen>**.
- 2. Im **<System->Einstellungen>**-Menü wählen Sie **<System -> Komm>** (Abb. 3-83).
- 3. Im **<Kommunikations>**-Menü (Abb. 3-84) wählen Sie das Kommunikations-**<Protokoll>**:
 - ASCII seriell>
 - <ASCII Ethernet>
 - <ASTM seriell>
 - <ASTM Ethernet>
 - <POCT1AEthernet>
 - <Wechselmedien>.

HINWEIS: Das ASCII-Protokoll funktioniert nur bei Sprachen, die einen lateinischen Zeichensatz verwenden.

<ASCII seriell> (Abb. 3-85) - Daten in leicht lesbarem OPTI Medical Standardformat. Der OPTI CCA-TS2 exportiert Datenketten, die mit der internen Druckausgabe identisch sind.

- Drücken Sie auf Speichern zum Speichern der Option.
- HINWEIS: Es werden nur lateinische Zeichen unterstützt. Einige Zeichen können sich, je nach gewählter Sprache, vom Ausdruck unterscheiden.

Abb. 3-86 ASCII Ethernet

Bereit	- 17:0 AST	08 21-Mär Miseriell
TOLOKOII		wiselien L
ASTM Hand	shaking	
Kein	Einzel	Vollständig
0	C	۰
	1	
Abbrecher	Vorgabe	P Speichern

Abb. 3-87 ASTM Seriell

Abb. 3-88 ASTM Ethernet

<ASCII Ethernet> (Abb. 3-86) - Daten in leicht lesbarem OPTI Medical Standardformat. Der OPTI CCA-TS2 exportiert Datenketten, die mit der internen Druckausgabe identisch sind.

- Geben Sie die IP-Addresse des Host-Computers und den Port ein._____
- Drücken Sie auf Speichern zum Speichern der Eingaben.

HINWEIS: Es werden nur lateinische Zeichen unterstützt. Einige Zeichen können sich, je nach gewählter Sprache, vom Ausdruck unterscheiden.

<ASTM Seriell> (Abb. 3-87) - ASTM-Standardformat. Weitere Informationen hierzu finden Sie in den OPTI CCA-TS2 Schnittstellen-Spezifikationen.

Wählen Sie <ASTM Handshaking>.
 <Kein> – Alle Daten werden ohne Empfangsbestätigung gesendet.

<Einzel> – Alle Daten werden in einem einzigen Paket mit einer einmaligen Empfangsbestätigung gesendet.

- **<Vollständig>** Jeder Datensatz wird einzeln mit Empfangsbestätigung gesendet.
- Drücken Sie auf Speichern zum Speichern der Eingaben.

<ASTM Ethernet> (Fig. 3-88) - ASTM-Standardformat. Weitere Informationen hierzu finden Sie in den OPTI CCA-TS2 Schnittstellen-Spezifikationen.

- Geben Sie die IP-Addresse des Host-Computers und den Port ein.
- Wählen Sie < ASTM Handshaking>.

<Kein> – Alle Daten werden ohne Empfangsbestätigung gesendet.

<**Einzel>** – Alle Daten werden in einem einzigen Paket mit einer einmaligen Empfangsbestätigung gesendet.

<Vollständig> – Jeder Datensatz wird einzeln mit Empfangsbestätigung gesendet.

• Drücken Sie auf Speichern zum Speichern der Eingaben.

System>Einste	llungen>Kommunikation	
Bereit	😼 17:08 21-Mär	
Protokoll	POCT1A Ethernet	
IP-Adresse	0.0.0.0	
Port	6700	
POCT Modus	Synchron	
Patientenliste		
Benutzerliste		
Hersteller-Ricl	ntlinien 🗌	
Abbrechen	Vorgabe Speichern	

Abb. 3-89 POCT1AEthernet

System>Einst Bereit	ellunge	n>Komi 17:08	nuni 3	katio 21-l	n Mär
Protokoli	Γ	Wechse	lmed	lien	-
Trennzeichei	• [Ko	mma		
Abbrechen	Vorg	jabe	8	Speic	hern

Abb. 3-90 Wechselmedien

<POCT1AEthernet> (Abb. 3-89) -

- **<IP Adresse>** IP-Adresse des Host-Computers
- **<Port>** Port-Nummer
- **<POCT Modus>** Kontinuierlich oder synchron
- **<Patientenliste>** Ist diese Funktion aktiviert, können Patientenlisten von einem entfernten Computer gesendet werden.
- **<Benutzerliste>** Ist diese Funktion aktiviert, können Benutzerlisten von einem entfernten Computer gesendet werden.
- **<Hersteller-Richtlinien>** Ist diese Funktion aktiviert, werden Hersteller-Richtlinien untestützt.
- Drücken Sie auf Speichern zum Speichern der Eingaben.

<Wechselmedien> - (Abb. 3-90) - Wählen Sie diese Option zum Datenexport mit Hilfe eines USB-Massenspeichers.

- Wählen Sie als Trennzeichen <Komma> oder
 <Semikolon> f
 ür die Übertragung von CSV-Dateien in MS Excel.
- Drücken Sie auf Speichern zum Speichern der Eingaben.
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

3.2.4.6 Ethernet-Einstellungen

Drucker	Finheiten	Sprache
Drainiti		
Hardware	Komm	Ethernet

Abb. 3-91 Ethernet

Sytem>Einstellun	gen>Ethernet
Bereit 😽	17:09 21-Mär
IP-Art	Dynamisch Statisch
IP-Adresse	255.255.255.255
Teilnetzmaske	255.255.255.255
Gateway	255.255.255.255
Port	6703
Abbrechen	Vorgabe Speichern

Abb. 3-92 Ethernet-Einstellungen

System>Diagn	iostik>l	thernet	_	_
Bereit	5	12:45		10-Dez
Anschluss -				
Stand			Ve	rbunden
Dauer		0 Ta	age I	01:17:14
Geschwindigk	eit		1	00 Mbps
IP-Adresse		192	2.16	8.18.135
Aktivität —				
Ges	sendet		Em	pfangen
Pakete 10	421			12323

Abb. 3-93 Ethernet Test

Das **<Ethernet>**-Menü wird zum Konfigurieren der Ethernet-Einstellungen zur Port-Erkennung und Festlegung der IP-Adresse benutzt.

- 1. Im Hauptmenü wählen Sie **<System-**Manager> - **<Einstellungen>**.
- Im <System->Einstellungen>-Menü im Register <System> wählen Sie <Ethernet > (Abb. 3-91).

3. Das Menü **<System>Einstellungen>** Ethernet> wird angezeigt (Abb. 3-92).

Einstellen der Ethernet-Verbindung:

- 1. Schließen Sie das Gerät an ein aktives Netzwerk an.
- 2. Wählen Sie im Hauptmenü **System-**Manager>Diagnostik>Tests>Ethernet>.
- Stellen Sie sicher, dass der Teststand

Sytem>Einstellun Bereit	ngen>Ethernet 17:09 21-Mär
IP-Art	Dynamisch Statisch
IP-Adresse	255.255.255.255
Teilnetzmaske	255.255.255.255
Gateway	255.255.255.255
Port	6703
Abbrechen	Vorgabe Speichern

Abb. 3-94 Ethernet-Einstellungen

- Kehren Sie dann in das Menü **System->** Einstellungen>System>Ethernet> (Abb. 3-94) zurück und machen Sie die folgenden Eingaben.
 - **<IP-Art>** Statisch oder dynamisch.
 - **<IP-Adresse>** Hier wird die statische IP-Adresse des Gerätes eingegeben. Wenn Sie diesen Wert nicht kennen, wenden Sie sich bitte an Ihren Netzwerkadministrator.
 - **<Teilnetzmaske>** Eingabe der Teilnetzmaske bei Verwendung einer statischen IP-Adresse. Die Teilnetzmaske ist netzwerk-spezifisch. Wenn Sie diesen Wert nicht kennen, wenden Sie sich bitte an Ihren Netzwerkadministrator.
 - **<Gateway>** Eingabe der Gateway-Adresse bei Verwendung einer statischen IP-Adresse. Die Gateway-Adresse ist netzwerk-spezifisch. Wenn Sie diesen Wert nicht kennen, wenden Sie sich bitte an Ihren Netzwerkadministrator.
 - **<Port>** Port zur Erkennung des Gerätes bei Verwendung einer statischen oder dynamischen IP-Adresse. Die Vorgabe-Einstellung ist 6703, kann aber bei Bedarf geändert werden.
- HINWEIS: Bei Wahl einer statischen IP-Adresse müssen IP-Adresse des Gerätes und Gateway im gleichen Netzwerk sein, um kommunizieren zu können.
- 5. Drücken Sie auf Speichern zum Speichern der Eingaben.
- 6. Zur Rückkehr in die **System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

In der Statusanzeige erscheint das folgende Symbol , wenn die Netzverbindung aktiviert ist (Abb. 3-94).

3.2.5 Wartungseinstellungen

System	
Bereit 🖏	17:13 21-Mär
Zeit und Datum	Diagnostik
Einstellungen	Wartung

Abb. 3-95 Wartung

System>Wartung	
Bereit 😽 17:10	21-Mär
Wartung	
Pumpenwechsel	Fertig
Letzte Pumpeninstallation	
Reinigung	Fertig
Letzte Reinigung	
Einstellungen	

Abb. 3-96 Einstellungen

Wartung>Einst	tellungen	a Di Mör
Bereit	*6 17:1	0 21-Mar
Hinweis: Pumpenwect	nsel	
Hinweis: Rein	igung	
Reinigung	Wöchentlich ©	Monatlich C
Abbrechen	Vorgabe	E Speichern

Abb. 3-97 Wartungsfunktionen

In diesem Menü können Erinnerungshilfen für Wartungsmaßnahmen eingestellt werden.

Alle hier gewählten Wartungsmaßnahmen werden nach ihrer Durchführung auf dem Wartungsprotokoll ausgedruckt.

- 1. Im Hauptmenü wählen Sie **<System-**Manager> - **<Wartung>** (Abb. 3-95).
- 2. Geben Sie die Benutzer-ID ein, wenn diese Funktion aktiviert ist.

3. Im **<Wartungs>**-Menü wählen Sie **<Einstellungen>** (Abb. 3-96).

- Im **<Wartungs>**-Menü (Abb. 3-97) können Sie die Funktion **<Pumpenwechsel -Hinweis>** wählen, um bei einem erforderlichen Pumpenwechsel eine Benachrichtigung zu erhalten.
- Wird die Funktion <Reinigungshinweis> aktiviert, erhalten Sie eine Benachrichtigung, wenn die wöchentliche oder monatliche Reinigung fällig ist.

Wählen Sie **<Monatlich>**, wenn der Analysator nicht jede Woche benutzt wird.

Weitere Informationen zu Wartungsmaßnahmen finden Sie in Kapitel 7.

4 K	ALIBRIERUNG UND QUALITÄTSKONTROLLE	4-1
4.1	Kalibrierung	4-1
4.2	QC-Übersicht	4-2
4.3	Externe Qualitätskontrolle (Ringversuche)	4-2
4.4	Kalibrierprüfung	4-3
4.5	Empfehlungen zur Qualitätskontrolle	4-3
4.5.1 4.5.2	Messung einer Standardreferenzkassette (SRC) Messung einer QC-Probe	
	4.5.2.1 QC-IVIESSUING (OF IT CHECK, OP IT CHECK PLUS)	

4 KALIBRIERUNG UND QUALITÄTSKONTROLLE

4.1 Kalibrierung

Alle OPTI Kassettenchargen werden während des Herstellungsprozesses kalibriert. Diese Kalibrierung wird mit Hilfe von Präzisionslösungen und gravimetrisch hergestellten Gasmischungen durchgeführt, die das Messverhalten der Kassette an mehreren Punkten über den gesamten Messbereich des Messwerts überprüfen. Die Kassettenpackungen werden dann mit einem Barcode-Etikett versehen, das sowohl diese Kalibrierinformationen als auch die Chargennummer und das Verfallsdatum enthält.

Vor der Durchführung einer Probenanalyse wird der Barcode der Kassette entweder manuell oder über den Barcodescanner in den Analysator eingegeben. Die Kassette wird dann installiert und eine Kalibrierprüfung mit der für den Kassettentyp entsprechenden Methode durchgeführt. Zusätzlich wird eine optische Nullpunktkalibrierung aller optischen Kanäle durchgeführt.

Während des Kalibrier- und Messvorgangs werden automatisch diagnostische Tests durchgeführt, um ein einwandfreies Funktionieren des Gerätes und eine einwandfreie Messung der Kassette sicherzustellen. Diese Tests überprüfen die Kassette automatisch auf eventuelle Beschädigung der Verpackung, führen eine Temperatur- und Strömungskontrolle während der Kalibrierung durch, prüfen das Ausgleichverhalten des Sensors während der Kalibrierung und Messung und beinhalten eine automatische Luftblasenerkennung. Sie stellen unzureichende Probenvolumen während der Probenaufnahme fest, erkennen automatisch eine ungenügende Gasversorgung, einen niedrigen Batteriestand, eine verschmutzte Optik, verschmutzte Strömungselemente oder Pumpenteileverschleiß.

Der tHb-Kanal muss alle 3 Monate kalibriert werden. Diese Kalibrierung wird mit Hilfe der tHb-Kalibrierkassette durchgeführt. Die tHb-Kalibrierung prüft die Messoptik und -elektronik und korrigiert mögliche Abweichungen.

Weitere Informationen zur tHb-Kalibrierung finden Sie in Abschnitt **7.3 – Vierteljährliche** Wartung.

4.2 QC-Übersicht

Der Zweck eines Qualitätskontrollprogramms ist die Sicherung zuverlässiger Patientenwerte über die klinisch wichtigen Bereiche für alle Messwerte. Das Qualitätskontrollprogramm sollte den gesamten Bereich der Probenentnahme, Vorbereitung, Ergebnisanalyse, Protokoll und Diagnose, so wie die Ausbildung des Personals, das an all diesen Verfahren teilnimmt, umfassen.

Ein Qualitätskontrollprogramm für Blutgasanalyse umfasst die Analyse von Materialien mit bekannten Werten oder Bereichen und einen Vergleich dieser Werte mit den Messwerten des Analysators. Mit einem solchen Programm wird die analytische Leistung des Labors bewertet und dokumentiert.

Ein effektives Qualitätskontrollprogramm sollte die folgenden Punkte beinhalten:

- Bewertung der Präzision über den gesamten analytischen Bereich.
- Einschätzung der Fehlerarten und ihrer Folgen und Handhabungsmethoden über den gesamten Ablauf hinweg.
- einfache statistische Berechnungen zur Feststellung der Präzision.
- Kontrolltabellen oder Diagramme mit Warnbereichen zur Vereinfachung der Ergebnisbewertung durch das technische Personal.
- klare Richtlinien, die festlegen, wann Messergebnisse zu akzeptieren oder abzulehnen sind.
- klare Korrekturmaßnahmen für Werte außerhalb der Kontrollbereiche.

4.3 Externe Qualitätskontrolle (Ringversuche)

Die externe Qualitätskontrolle in der Form von Ringversuchen ergänzt die oben genannte interne Qualitätskontrolle und ist ein wichtiger Bestandteil eines umfangreichen Qualitätssicherungssystems in der Labormedizin. Mit der Messung unbekannter Proben können vor allem systematische Fehler, die durch interne Qualitätskontrollen manchmal nur schwer zu erkennen sind, ausfindig gemacht und beseitigt werden. Weiterhin ist die Analyse dieser Proben vergleichbar mit der Analyse von Patientenproben. Die Durchführung von Ringversuchen erweitert das Qualitätssicherungssystem dahingehend, dass bei diesen Untersuchungen oft Proben verwendet werden, deren Analytgehalt sich von dem der täglichen internen Kontrollmessungen unterscheidet.

Die relative Testleistung der einzelnen, an Ringversuchen teilnehmenden, Laboratorien wird an Hand eines Leistungsvergleichs bestimmt, bei dem Testergebnisse aus einer relativ großen Gruppe von Laboratorien mit gleichen oder ähnlichen Messgeräten verglichen werden.

VORSICHT: Im OPTI CCA-TS2 sollten nur klare Ringversuchsmaterialien ohne Farbstoffe oder Emulsionen verwendet werden.

4.4 Kalibrierprüfung

Mit Kalibrierprüfungen kann die Fähigkeit eines Blutgasanalysators bekannte Werte an bestimmten Punkten innerhalb der Protokollbereiche aller Parameter zu liefern, validiert werden. Diese Anforderung wird von verschiedenen Zulassungs- und Prüfbehörden gestellt.

Der Abschnitt "Messparameter" dieser Gebrauchsanweisung enthält Päzisions- und Wiederfindungsdaten für alle Parameter bei Patientenmessungen in den üblichen Messbereichen.

OPTI Medical bietet ein Kalibrier-Kit für alle Parameter mit der Ausnahme von tHb und SO_2 an. Zur Kalibrierprüfung von tHb und SO_2 wird die Analyse von Vollblut im Vergleich mit einem Referenzgerät empfohlen.

4.5 Empfehlungen zur Qualitätskontrolle

OPTI Medical empfiehlt die Verwendung der Multilevel Standardreferenkassetten (SRC) zur täglichen Qualitätskontrolle des OPTI CCA-TS2. Diese speziellen Testkassetten enthalten einen stabilen optischen Sensor-Simulator, der vom Gerät wie jede andere Kassette gemessen wird und die Sicherheit gibt, dass die vom Gerät gemessenen Werte konsistent sind.

Zur Simulierung von Patientenmessungen mit niedrigen, normalen und hohen Messwerten werden die SRC-Sensoren mit Licht verschiedener Wellenlängen bestrahlt. Level 1 und 3 stellen hohe und niedrige Werte dar, und in den Vorgabe-Einstellungen ist eine tägliche Messung dieser Level erforderlich, bevor das Gerät zur Patientenmessung freigegeben wird (zur Änderung dieser Einstellungen siehe Abschnitt 3.2.1.2). Die erhaltenen Messergebnisse sollten innerhalb der im SRC-Barcode enthaltenen Bereiche liegen.

Bei Verwendung einer neuer Kassettencharge und danach in monatlichen Abständen sollte eine Validierung durch Analyse von OPTI CHECK oder OPTI CHECK PLUS Blutgas-Kontrollmitteln durchgeführt werden. Diese Materialien sollten Zielwerte für alle Messwerte liefern, die innerhalb der für das jeweilige Labor üblichen Messbereiche liegen.

Kontrollmittel	Frequenz
SRC Level 1 und Level 3	Mindestens 1x pro Tag, wenn das Gerät in Betrieb ist.
OPTI Check oder OPTI Check Plus	Monatlich und bei Verwendung einer neuen Kassettencharge.

OPTI Medical empfiehlt die Durchführung von QC-Messungen in den folgenden Zeitabständen:

4.5.1 Messung einer Standardreferenzkassette (SRC)

Abb. 4-1 Barcode scannen

	Ber	nutzer	-ID eir	ngebe	n
Q	E	Т	U	0	-
	w	R	z	1	р
A	D	G	J	L	Ä
	s	F	Н	к	Ö
Y	С	В	м		
	x	v	N	Ü	
	123	Abk	brechen		ок

Abb. 4-2 Benutzer-ID eingeben

Abb. 4-3 Neue SRC-Charge

OPTI Medical empfiehlt die Messung der Level 1 und 3 (hohe und niedrige Werte) der Standardreferenzkassette (SRC) zur täglichen Qualitätskontrolle des OPTI CCA-TS2.

- Zur Messung der SRC muss zuerst der Barcode eingelesen werden. Nehmen Sie die SRC-Packung und halten Sie den unteren Barcodestreifen in einem Abstand von 5-8 cm vor den Barcodescanner auf der rechten Seite des Analysators (Abb. 4-1).
- HINWEIS: Der Barcode kann sowohl direkt im Hauptmenü als auch über das QC-Menü durch Drücken von <QC-Manager>QC>SRC> eingelesen werden.
 - Die rote Linie des Scanners sollte den gesamten Barcode abdecken.
 - Ein Signalton ertönt, und die Statusanzeige leuchtet zur Bestätigung eines gültigen Barcodes grün auf.
 - Bei einer abgelaufenen Kassette leuchtet die Anzeige rot auf.
- HINWEIS: Wenn der Barcodestreifen beschädigt oder unleserlich ist, drücken Sie auf <Manuelle Eingabe>, und geben die auf dem Barcode-Etikett angegebene Barcodenummer über die Tastatur ein.
- Ist die Funktion <Nicht geschützte Benutzer-ID> in den Sicherheitseinstellungen aktiviert (siehe Abschnitt 3.2.3), werden Sie dann aufgefordert, die Benutzer-ID einzugeben (Abb. 4-2).
- HINWEIS: Benutzer-Identifikationskarten können in diesem Menü auch über den Barcodescanner eingelesen werden.
- Wird eine neue SRC-Charge benutzt, erscheint eine Warnung (Abb. 4-3). Drücken Sie auf weiter, um mit der SRC-Messung zu beginnen.

Abb. 4-4 Level wählen

Abb. 4-5 Klappe öffnen

Abb. 4-6 SRC einsetzen

4. Wählen Sie die gewünschten Level (Abb. 4-4) und drücken Sie auf

5. Öffnen Sie Messkammerklappe durch Drücken der roten Öffnungstaste (Abb. 4-5).

6. Prüfen Sie, ob die SRC sauber ist, und legen Sie sie in die Kammer ein. Drücken Sie sie fest nieder, um sicherzustellen, dass sie richtig eingesetzt ist (Abb. 4-6).

Abb. 4-7 Klappe schließen

C>SRC	10	12:10	10 Dez
wessung	10	1 13.10	1 10-Dez
SRC-	Messun	g - Bitte w	arten
Mess	sung		
	4	8%	

Abb. 4-8 SRC-Messung

Level	1 1	evel 2	evel 3
Para- meter	Ergebnis	Bereiche	Gültig/ Ungült.
pН	7.100	7.080 - 7.120	Gültig
PC02	70.0	68.0 - 72.0	Gültig
P02	60.0	57.0 - 63.0	Gültig
Na+	125.0	123.0 - 127.0	Gültig
K+	2.50	2.20 - 2.80	Gültig
CI-	80.0	78.0 - 82.0	Gültig
Ca++	1.80	1.70 - 1.90	Gültig
Zur	rück Se	ite 1 von 2	Vor 📕

Abb. 4-9 SRC-Ergebnisse (1)

7. Schließen Sie die Messkammerklappe (Abb. 4-7).

• Sobald die Klappe geschlossen wird, fängt der Messvorgang an, was auf der Anzeige mit einem Statusbalken (ca. 60 Sekunden pro Level) angezeigt wird (Abb. 4-8).

- Nach Beendigung der Messung werden die Ergebnisse angezeigt (Abb. 4-9).
- 8. Drücken Sie auf vor zur Anzeige weiterer Ergebnisse (Abb. 4-10).

QC>SRC>Ergebnisse				
Messung 😽		13:12	10-Dez	
Level	1 L	.evel 2 L	evel 3	
Glu	40.0	36.0 - 44.0	Gültig	
BUN	5.6	4.2 - 7.0	Gültig	
Lactate	1.00	0.70 - 1.30	Gültig	
tHb	20.0	18.5 - 21.5	Gültig	
S02	70.0	68.0 - 72.0	Gültig	
Zurück Seite 2 von 2 Vor				

Abb. 4-10 SRC-Ergebnisse (2)

Fehler					
Bereit	5	11:13		08-Mär	
Level	Level 1 Level 2 Level 3				
Glu	40.0	36.0 - 44	.0	Gültig	
DUIN	5.6	12 71	n l	Gillin	
Kasset	te			-	
	Bitte Kassette entfernen				
Zur	ück Se	ite 2 von 2	Va	or 📫	
1					

Abb. 4-11 Kassette entfernen

- Drücken Sie auf die Register <Level 2> und <Level 3> (Abb. 4-10) zur Anzeige der Ergebnisse für diese Level.
- HINWEIS: Werden SRC-Messungen vor der Messung flüssiger Kontrollmittel durchgeführt, werden alle Parameter angezeigt. Zur Reduzierung der Anzahl der angezeigten Parameter führen Sie Flüssigkontrollmessungen mit der gewünschten Kassettenart durch.
 - Das Gerät vergleicht die Ergebnisse automatisch mit den Messbereichen und speichert die Werte in der internen Datenbank.
 - Bei Parametern innerhalb der Messbereiche wird **<Gültig>** angezeigt und gedruckt.
 - Bei Parametern außerhalb der Messbereiche oder bei internen Abweichungen wird
 Ungültig> angezeigt.
- HINWEIS: Der Ausdruck beginnt automatisch, wenn die ersten Ergebnisse angezeigt werden. Das automatische Drucken von Messprotokollen nach einer Messung kann im Einstellungsmenü ausgeschaltet werden (siehe Abschnitt 3.2.4.1). Weitere Informationen zum Drucken von Protokollen finden Sie in Kapitel 6 Datenmanagement.
- 10. Drücken Sie auf zum Verlassen der Ergebnisanzeige.
- 11. Nach Aufforderung (Abb. 4-11) öffnen Sie die Klappe und entfernen Sie die SRC.
- 12. Legen Sie die SRC sofort nach der Entnahme aus dem Gerät wieder in die Packung zurück.
- 13. Schließen Sie die Klappe.

Wenn der SRC Test ungültig ist, reinigen Sie die SRC, das Optikfenster und die Innenseite der Messkammerklappe vorsichtig mit Alkohol und einem fusselfreien Tuch, und wiederholen Sie dann den Vorgang. Wenn der Test ein zweites Mal nicht zulässig ist, suchen Sie die Ursache in Kapitel 8 - Fehlerdiagnose.

- HINWEIS: Zur Einstellung von QC-Sperren siehe Abschnitt 3.2.1.2.
- HINWEIS: Die Anzahl und Häufigkeit der zu messenden SRC-Level richtet sich nach den geltenden Labor- und Krankenhausvorschriften.

4.5.2 Messung einer QC-Probe

OPTI Medical empfiehlt die Durchführung von Qualitätskontrollmessungen bei jeder neuen Kassettencharge und danach in monatlichen Abständen.

Es sollten nur die von OPTI Medical empfohlenen Kontrollmittel OPTI CHECK oder OPTI CHECK PLUS verwendet werden, die keine Farbstoffe oder andere Farbzusätze enthalten. Beim Öffnen einer neuen Kontrollmittel-Charge müssen die Chargeninformationen in das Gerät eingegeben werden (siehe Kapitel 3.2.1).

- HINWEIS: Kontrollmittel sollten bei den vom Hersteller empfohlenen Temperaturen gelagert werden.
- HINWEIS: Der Zielwert für pO₂reagiert sehr empfindlich auf Lagertemperatur und Luftdruck. In oberen Höhenlagen können Werte außerhalb der Zielbereiche auftreten.

Das Kontrollmaterial sollte Zielwerte für alle Messwerte in den laborüblichen Messwertbereichen liefern.

4.5.2.1 QC-Messung (OPTI CHECK, OPTI CHECK PLUS)

Abb. 4-12 QC-Manager

 Zur Durchführung einer QC-Messung wählen Sie **<QC-Manager>** im Hauptmenü (Abb. 4-12) und dann **<QC>** im **<QC>** Menü.

Benutzer-ID eingeben					
Q	E	Т	U	0	-
	w	R	Z	I	Р
A	D	G	J	L	Ä
	S	F	Н	к	Ö
Y	С	В	м		
	x	v	N	Ü	
	123	Abk	prechen		ок

Abb. 4-13 Benutzer-ID eingeben

QC>QC	_	_	
Bereit	5	11:11	08-Mär
Materialart			
OPTI CHECK OPTI CHECK PLU			ECK PLUS
(0		0
o	PTI CHECI	K Level wäl	nlen
	1	2	3
Charge			
Verf.			
	C	0	о
		1	
Ab	brechen	OF	(

Abb. 4-14 QC-Level wählen

Abb. 4-15 Barcode einlesen

- Ist die Funktion <Nicht geschützte Benutzer-ID> in den Sicherheitseinstellungen aktiviert (siehe Abschnitt 3.2.3), werden Sie dann aufgefordert, die Benutzer-ID einzugeben (Abb. 4-13).
- HINWEIS: Benutzer-Identifikationskarten können in diesem Menü auch über den Barcodescanner eingelesen werden.
- 3. Wählen Sie den gewünschten Level (Abb.4-14), und drücken Sie auf
- HINWEIS: Bei Verwendung einer neuen Chargennummer versichern Sie sich, dass vor der Probenmessung die Zielbereiche eingegeben wurden (siehe Kapitel 3.2.1).
- Halten Sie den Barcodestreifen der OPTI Kassettenpackung in einem Abstand von 5-8 cm vor den Barcodescanner auf der rechten Seite des Analysators, und die Chargen- und Kalibrierinformationen der Kassette werden automatisch eingelesen (Abb. 4-15).
 - Die rote Linie des Scanners sollte den gesamten Barcode abdecken.
 - Ein Signalton ertönt, und die Statusanzeige leuchtet zur Bestätigung eines gültigen Barcodes grün auf.
 - Bei einer abgelaufenen Kassette leuchtet die Anzeige rot auf.
- HINWEIS: Zur Handhabung der gekühlten Kassetten beachten Sie bitte die Anweisungen auf dem Beipackzettel der Kassettenpackung.
- HINWEIS: Wenn der Barcodestreifen beschädigt oder unleserlich ist, drücken Sie auf <Manuelle Eingabe>, und geben die auf dem Barocode-Etikett angegebene Barcodenummer über die Tastatur ein.
- HINWEIS: Eine Qualitätskontrollmessung kann mit jeder beliebigen Kassettencharge oder Kassettenart durchgeführt werden.

Abb. 4-16 Klappe öffnen

Abb. 4-17 Kassette einlegen

Abb. 4-18 Klappe schließen

5. Öffnen Sie Messkammerklappe durch Drücken der roten Öffnungstaste (Abb. 4-16).

- 6. Öffnen Sie die Kassettenverpackung und entnehmen Sie die Kassette. Wischen Sie diese bei Anzeichen von Feuchtigkeit mit einem sauberen, trockenen Tuch ab (Abb. 4-17).
- HINWEIS: Wird die QC-Probe mit einem Kapillarröhrchen eingegeben, entfernen Sie den Spritzenadapter, bevor Sie die Kassette in die Messkammer einlegen.
- Legen Sie die Kassette in die Messkammer ein. Drücken Sie sie fest nieder, um einen korrekten Sitz zu garantieren (Abb. 4-17).
- HINWEIS: Die Kassette sollte sofort nach Öffnen der Packung gemessen werden. Wird die Kassette nicht innerhalb von 15 Minuten (2 Minuten bei B-Lac Kasssetten*) nach Öffnen der Packung gemessen, kann sie zur Messung nicht mehr verwendet werden.
- Schließen Sie die Messkammerklappe (Abb. 4-18).

^{*} Dieses Produkt ist zur Zeit in Deutschland nicht erhältlich.

QC>QC	_	_	_
Bereit	5	11:14	08-Mär
Ka	ssette wi Bitte	ird kalibrie warten	ert -
Kalik 	oriervorgan (g)%	

Abb. 4-19 Kalibrierung

Abb. 4-20 Kontrollmittel eingeben

Abb. 4-21 Kapillarröhrchen anstecken

- 9. Das System beginnt mit der Kalibrierung (Abb. 4-19). Die grüne Statusanzeige blinkt, um anzuzeigen, dass eine Messung stattfindet und die Messkammerklappe nicht geöffnet werden darf.
- HINWEIS: Wenn die Messkammerklappe geöffnet wird, während die grüne Statusanzeige blinkt, wird die Kassettenkalibrierung abgebrochen, und die Kassette muss ungenutzt entsorgt werden.
- 10. Nach Beendigung der Kalibrierung ist das Gerät zur Probenaufnahme bereit (Abb. 4-20).
- 11. Nehmen Sie eine Ampulle aus der Kontrollmittelpackung, und drehen Sie diese vorsichtig zur Freisetzung der Streupartikel um, ohne sie dabei mit Ihren Händen zu erwärmen.
- HINWEIS: Ein zu heftiges Schütteln der Ampulle ist zu vermeiden, da dies zu einer übermäßigen Luftblasenbildung führen und die Ergebnisse nachhaltig beeinflussen kann.
- 12. Klopfen Sie leicht mit dem Fingernagel an die Oberseite der Ampulle, um sicherzustellen, dass sich alle Flüssigkeit im unteren Teil befindet.
- 13. Brechen Sie vorsichtig die Spitze der Ampulle ab.
- HINWEIS: Schützen Sie beim Öffnen der Ampulle Ihre Finger mit Handschuhen oder Verbandsmull.
- 14. Sie können die Kontrollflüssigkeit entweder direkt aus der Ampulle eingeben oder ein Kapillarröhrchen mit einer kleinen Menge Kontrollflüssigkeit füllen.
- 16. Wird ein Kapillarröhrchen verwendet, drücken Sie dieses fest in den Einfüllmund (Fig. 4-21).
- 17. Drücken Sie auf ок (Abb. 4-20).
- HINWEIS: OPTI empfiehlt die Aufnahme direkt aus der Ampulle und die Verwendung einer Ampulle pro Messung. Bei der Verwendung von Kapillarröhrchen sollten nur Röhrchen ohne Heparinisierung verwendet werden.

Abb. 4-22 QC-Messung

Messun	5	10:42	11-Mär
Para- meter	Ergebnis	Bereiche	Gültig/ Ungült.
pН	7.443	7.370 - 7.490	Gültig
PC02	44.1	35.0 - 45.0	Gültig
P02	99.7	88.0 - 118.0	Gültig
Na+	145.5	136.0 - 150.0	Gültig
K+	4.96	4.50 - 5.30	Gültig
Ca++	1.25	1.10 - 1.30	Gültig
tHb	14.3	12.2 - 15.2	Gültig
S02	88.3	87.0 - 93.0	Gültig

Abb. 4-23 QC-Ergebnisse

Abb. 4-24 Ergebnisse akzeptieren

- Die QC-Probe wird in die Kassette eingesaugt und der Messvorgang beginnt (Abb. 4-22). Die Statusanzeige blinkt und die Klappe darf nicht geöffnet werden.
- Nach Beendigung der Messung werden die Ergebnisse angezeigt (Abb. 4-23). Werte innerhalb der vorprogrammierten Bereiche werden als <Gültig> und Werte außerhalb der Bereiche als <Ungültig> angezeigt.
- 18. Drücken Sie auf zum Akzeptieren oder Ablehnen der Ergebnisse.
 - Im nachfolgenden Bildschirm (Abb. 4-24) drücken Sie auf **<Akzeptieren>** zum Speichern der Ergebnisse in der Datenbank.
 - Wählen Sie **<Ablehnen>** zum Ablehnen der Ergebnisse. Abgelehnte Ergebnisse werden nicht in der Datenbank gespeichert.
 - Wählen Sie <Überprüfen>, wenn Sie die Ergebnisse zur Überprüfung noch einmal sehen möchten.
- HINWEIS: Sowohl akzeptierte als auch abgelehnte Ergebnisse werden gedruckt. Beachten Sie die geltenden Vorschriften bezüglich der Dokumentation von Korrekturmaßnahmen bei abgelehnten Werten.
- HINWEIS: Nach dem Ausdruck der Ergebnisse werden die Daten mit der gewählten Datenübertragungsmethode exportiert (Abschnitt 3.2.4.6).
- HINWEIS: Das automatische Drucken von Messprotokollen nach einer Messung kann im Einstellungsmenü ausgeschaltet werden (siehe Abschnitt 3.2.4.1). Weitere Informationen zum Drucken von Protokollen finden Sie in Kapitel 6 Datenmanagement.
- Nach Aufforderung öffnen Sie die Messkammerklappe und entfernen Sie die Kassette.
 - Zur Messung weiterer Kontroll-Level wiederholen Sie den obigen Vorgang.

5 PF	ROBENHANDHABUNG UND MESSUNG	5-1
5.1	Probenentnahme und Handhabung	5-1
5.1.1 5.1.2	Sicherheitsvorkehrungen Probenanforderungen	5-1 5-1
5.1.3	Gerinnungshemmer und Probenentnahmegefäße	
5.1.4 5.1.5	Spritzen Kapillarröhrchen	
5.1.6 5 1 7	OPTI Medical ComfortSampler* Probenröhrchen	
5.1.8 5.1.9	Handhabung und Lagerung der Proben Testbedingungen	
5.2 5.2.1	Probenvorbereitung	5-4
5.3	Probenanalyse	5-5

5 PROBENHANDHABUNG UND MESSUNG

Der OPTI* CCA-TS2 Analysator erstellt eine schnelle und einfache Analyse von pH-, pCO₂-, pO₂-, Na⁺-, K⁺-, Ca⁺⁺-, Cl⁻-, Glu-, BUN/Urea-, Lac-, tHb- und SO_2 -Werten in Vollblut, so wie von pH, Na⁺, K⁺, Ca⁺⁺, Cl⁻, Glu und BUN/Urea in Serum und Plasma.

Der Analysator nimmt Proben direkt aus Spritzen, Kapillarröhrchen und OPTI Medical ComfortSamplern* durch den Einfüllmund in die OPTI Sensorkassette auf.

HINWEIS: Die Handhabung von biologischen Proben muss unter Beachtung der geltenden Sicherheitsvorschriften erfolgen.

5.1 Probenentnahme und Handhabung

5.1.1 Sicherheitsvorkehrungen

Bei der Entnahme von Blutproben müssen die allgemein gültigen Sicherheitsanforderungen beachtet werden. Bei der Handhabung von Blutproben besteht immer die Gefahr der Übertragung von HIV, Hepatitis-B oder C-Viren oder anderer durch Blut übertragbarer Pathogene. Geeignete Blutentnahmetechniken müssen angewandt werden, um das Risiko für das Laborpersonal zu minimieren. Schutzhandschuhe und geeignete Schutzkleidung müssen getragen werden.

Richtlinien und weitere Informationen zur Handhabung von Blutproben sind z.B. im CLSI Dokument M29-A3, *Protection of Laboratory Workers from Occupationally Acquired Infections; Approved Guideline – Third Edition;* März 2005; zu finden..

5.1.2 Probenanforderungen

Die Blutentnahme zur Analyse muss von qualifiziertem Personal durchgeführt und entsprechend protokolliert werden.

Siehe auch CLSI Dokument H11-A4, *Procedures for the Collection of Arterial Blood Specimens; Approved Standard - Fourth Edition*; September 2004, für ausführliche Informationen zur Probenentnahme, Lagerung und Handhabung.

5.1.3 Gerinnungshemmer und Probenentnahmegefäße

Zur Gerinnungshemmung bei der Blutgas- und Elektrolytanalyse sollte ausschließlich Lithiumheparin verwendet werden. Für die Blutgasanalyse können Lithiumheparin, Natriumheparin oder andere Heparinsalze verwendet werden. Andere Gerinnungshemmer wie EDTA, Citrat, Oxalat und Fluorid haben einen signifikanten Einfluss auf den Blut-pH-Wert und die Elektrolytwerte und sollten daher nicht verwendet werden. Lithiumheparin sollte zur Messung von Lithium nicht verwendet werden.

5.1.4 Spritzen

Bei der Verwendung von Flüssigheparin zur Gerinnungshemmung sollten die Entnahmegefäße nicht größer als die erforderliche Blutmenge sein, um eine Verdünnung des Blutes durch die gerinnungshemmende Lösung zu minimieren. Obwohl die Anwendung von Kunststoffspritzen zur Entnahme von Blutproben für die Blutgasanalyse weit verbreitet ist, gibt es Hinweise in der Literatur bezüglich der Verwendung von Kunststoffspritzen bei PO_2 -Werten über dem Normalwert. Bei Kühlung der Probe mit Eiswasser ist besonders auf die CO_2 - und Sauerstofflöslichkeit in bestimmten Kunststoffen zu achten. Bei Blutproben, bei denen sehr hohe PO_2 -Werte erwartet werden, sollte die Analyse so schnell wie möglich nach der Entnahme erfolgen, um eine Kühlung zu vermeiden. Vollblutproben sollten vor der Analyse gründlich gemischt werden, da die Sedimentation der Blutzellen die Messung des Gesamthämoglobins beeinflusst.

5.1.5 Kapillarröhrchen

Bei der Entnahme von Kapillarblutproben sollten Kapillarröhrchen mit einem Mindestfüllvolumen von 125 µl verwendet werden. Die Kapillarröhrchen von OPTI Medical Systems (MC0024) mit einem Mindestfüllvolumen von 200 µl sind dazu ideal geeignet. Die OPTI Medical Kapillarröhrchen für pH-, Blutgas- und Elektrolyte eignen sich nicht für die Lithiumanalyse. Die OPTI Kapillarröhrchen MC0024 sind nur für die Anwendung in OPTI CCA Analysatoren (GD7046, GD7013 und GD7045) freigegeben und sollten nicht in Blutgasgeräten anderer Hersteller verwendet werden.

Vor der Entnahme sollte die Punktionsstelle erwärmt oder anderweitig zur Anregung der arteriellen Blutzirkulation stimuliert werden. Die Punktion sollte tief genug sein, um einen ungehinderten und schnellen Blutfluss zu gewährleisten.

Kapillarröhrchen mit Tonverschlusskappen sollten nicht benutzt werden, da die scharfen Kanten den Einfüllmund der OPTI Kassette beschädigen könnten. Es sollten nur Kapillarröhrchen mit feuerpolierten Spitzen verwendet werden, um eine Beschädigung der Kassette zu vermeiden. Bei Verwendung eines Stahlstifts, wie er bei bestimmten Kapillarröhrchen benutzt wird, muss dieser vor der Probeneingabe in das Gerät entfernt werden, um eine Beschädigung der Kassette zu vermeiden.

Kapillarproben können bei Raumtemperatur durch die rasche Kühlung bei der Entnahme bis zu 30 Minuten gelagert werden.

In gekühlten Proben bleiben die Glucosewerte bis zu 30 Minuten konstant, in ungekühlten Proben bis zu 10 Minuten. Serum muss innerhalb dieser Zeitspannen abgeschieden werden.

5.1.6 OPTI Medical ComfortSampler*

Zur Blutentnahme für den OPTI CCA-TS2 kann der OPTI Medical ComfortSampler verwendet werden.

Nach der Entnahme sollte der ComfortSampler, wie auch andere Kapillarröhrchen, mit der Verschlusskappe verschlossen und innerhalb von 30 Minuten in horizontaler Lage zur Analyse im Gerät gebracht werden.

In gekühlten Proben bleiben die Glucosewerte bis zu 30 Minuten konstant, in ungekühlten Proben bis zu 10 Minuten. Serum muss innerhalb dieser Zeitspannen abgeschieden werden.

5.1.7 Probenröhrchen

Bei der Probenentnahme mit Probenröhrchen wird die Probe mit Hilfe einer Saugöhre (BP7183) aufgenommen.

- HINWEIS: Vollblutproben sollten so schnell wie möglich innerhalb von 5 Minuten nach der Blutentnahme analysiert werden. Für eine kurze Lagerung bis zu 1 Stunde sollten die Proben im Eis gekühlt werden.
- *HINWEIS:* Bei der Anwendung der Saugröhre bei Vollblutproben werden Elektrolyt- und pH-Werte angegeben, aber keine von pCO, abgeleiteten Werte erstellt.

5.1.8 Handhabung und Lagerung der Proben

Ausführliche Informationen und Richtlinien zur Probenentnahme, Gerätekalibrierung und Qualitätskontrolle bei der pH- und Blutgasanalyse, mit Angabe möglicher Fehlerquellen, die ungenaue Ergebnisse hervorrufen können, sind im CLSI Dokument H18-A3, *Procedures for the Handling and Processing of Blood Specimens*; Approved Guideline - Third Edition, November 2004, enthalten.

Vollblutproben sollten mit heparinisierten Spritzen, ComfortSampler oder Kapillaren entnommen und so bald wie möglich nach der Entnahme analysiert werden. Luftblasen sind sofort nach der Entnahme aus dem Probenentnahmegefäß zu entfernen. Es ist extreme Vorsicht geboten, um Nadelstichverletzungen zu vermeiden. Wird die Probe in einer Spritze oder einem Vakuumröhrchen entnommen, muss die Probe durch mehrmaliges Umdrehen oder Rollen der Spritze zwischen den Händen gründlich mit Gerinnungshemmer gemischt werden. Dann ist die Probe nach den geltenden Bestimmungen entsprechend zu etikettieren. Die Spritze mit der Probe muss auf Eis gelagert werden, da auf Grund des Zellstoffwechsels bei Raumtemperatur nach 5 Minuten eine Veränderung der Blutgas-, pH- und Glucosewerte der Probe eintritt.

Änderungen des pO_2 -Werts auf Grund von Sauerstoffverbrauch können durch mehrere Faktoren beeinflusst werden, u. a. die Anzahl der weißen Blutkörperchen und Retikulozyten, die Lagerungstemperatur und den ursprünglichen pO_2 -Wert. Bei Lagerungstemperaturen zwischen 1 und 5 °C bleiben die Ergebnisse der Blutprobe bis zu 2 Stunden gültig. Proben, bei denen eine hohe Anzahl weißer Blutkörperchen oder Retikulozyten oder hohe pO_2 -Werte vermutet werden, sollten so bald wie möglich nach der Entnahme analysiert werden.

In Spritzen mit pathologischen Blutproben kann sehr schnell eine Aggregation und Sedimentation der Erythrozyten eintreten, die die *c*tHb-Messung beeinträchtigen können. Zur Vermeidung derartiger Fehler sollte zuerst die OPTI Kassette zum Einleiten der Kalibrierung in den Analysator eingelegt werden. Dann wird nach Entfernen eventueller Luftblasen die Probe durch Rollen der Spritze (mindestens 60 Sekunden) gründlich gemischt. Daran anschließend sollte sofort die Messung im Analysator erfolgen.

Die Aufnahme der Probenflüssigkeit in den OPTI CCA-TS2 ist für Spritzen-, ComfortSamplerund Kapillarproben identisch. Aufnahmezeit, -Volumen und Geschwindigkeit bleiben unverändert. Es treten daher keine methodenabhängigen systematischen Fehler oder Ungenauigkeiten auf. Bei Spritzenproben muss jedoch ein ausreichendes Probenvolumen vorhanden sein (0,25 ml in einer 1 ml Spritze), um zu vermeiden, dass der Spritzenkolben den Spritzenadapter berührt.

Fehler in der Blutanalyse können trotz korrekter Entnahme durch unzureichendes Mischen der Probe nach der Entnahme und vor der Messung, durch Kontaminierung durch Raumluft, wenn Luftblasen nach der Entnahme nicht rechtzeitig entfernt wurden, oder durch Stoffwechselveränderungen in der Probe auftreten.

Für Serumproben sollte das Blut in einem nichtpräparierten Probengefäß entnommen werden. Die Probe sollte 30 Minuten gelagert und nach Eintreten der Spontangerinnung zentrifugiert werden. Dabei wird das Serum vom Blutkuchen getrennt und in ein geeignetes Probengefäß überführt und versiegelt. Sollte eine Lagerung der Probe erforderlich sein, kann der Probenbehälter verschlossen bei einer Temperatur von 4 bis 8 °C bis zu 48 Stunden im Kühlschrank gelagert werden. Gekühlte Proben sollten vor der Analyse auf Raumtemperatur (15 - 30 °C) erwärmt werden. Die Zulässigkeit der verwendeten Probenbehälter sollte von den einzelnen Labors festgelegt werden. Produkte variieren von Hersteller zu Hersteller und manchmal von Charge zu Charge.

HINWEIS: Serum eignet sich nicht als Probenmaterial für die Glucoseanalyse, da die Retentionszeit der Erythrozyten in der Probe zu lang ist. Die eintretende Glykolyse kann zu verminderten Glucosewerten in Serumproben führen.

5.1.9 Testbedingungen

Mindestprobenvolumen:	125 µl (60µL für B60-Kassette)
Probenart:	heparinisiertes Vollblut, Serum oder Plasma
Probenentnahme:	Spritze, Kapillare, ComfortSampler oder Probenröhrchen mit Saugröhre (nur E-Lyte CCA Kassetten)
Umgebungstemperatur:	10 - 30 °C
Relative Luftfeuchtigkeit:	5% bis 95% (nicht kondensierend)
Messverfahren:	optische Fluoreszenz (pH, pO ₂ , pCO ₂ , Na ⁺ , K ⁺ , Ca ⁺⁺ , Cl ⁻ , Glu, BUN/Urea, Lac) und Reflexion (tHb, SO ₂)

5.2 Probenvorbereitung

5.2.1 Vollblutproben

Entnehmen Sie das Blut in einer heparinisierten Spritze, einem Kapillarröhrchen oder einem ComfortSampler. Vollblutproben sollten so schnell wie möglich innerhalb von 5 Minuten nach der Blutentnahme analysiert werden. Für eine kurze Lagerung bis zu 1 Stunde sollten die Proben im Eis gekühlt werden.

- VORSICHT: Zur Gerinnungshemmung bei Vollblutproben muss die entsprechende Menge Heparin benutzt werden. Dabei sollten nur Heparinsalze und unter KEINEN Umständen die folgenden Gerinnungshemmer: EDTA, Zitrat, Oxalat, etc. verwendet werden.
- VORSICHT: Die Sedimentation der roten Blutkörperchen erfolgt in heparinisiertem Vollblut sehr schnell, was einen nachhaltigen Einfluss auf die tHb-Ergebnisse haben kann. Stellen Sie sicher, dass die Probe keinerlei Gasblasen enthält und gründlich gemischt ist, indem Sie mindestens eine Minute lang vor der Probeneingabe die Spritze zwischen den Handflächen hin- und herrollen und sie mehrmals umdrehen.
5.3 Probenanalyse

(Vollblut, Serum und Plasma)

Abb. 5-1 Barcode einlesen

Login	
Benutzer-ID:	
ADMIN	1
Passwort:	
	I
ок	Abbrechen

Abb. 5-2 Anmelden

Der OPTI CCA-TS2 Analysator zeichnet sich durch seine schnelle und einfache Handhabung aus.

Wenn die **<Bereit>**-Anzeige im Hauptmenü erscheint, ist das Gerät betriebsbereit.

- Schalten Sie den OPTI CCA-TS2 ein, und warten Sie, bis diese Anzeige erscheint (Abb. 5-1).
- Ist die Funktion <Geschützte Benutzer-ID> in den Sicherheitseinstellungen aktiviert (siehe Abschnitt 3.2.3.2.1), werden Sie dann aufgefordert, sich mit Benutzer-ID und Passwort anzumelden (Abb. 5-2).
 - Die hier eingegebene Benutzer-ID wird dann auf allen Messprotokollen für alle durchgeführten Aktivitäten angegeben.
- Nehmen Sie eine Kassettenpackung und halten Sie den Barcode in einem Abstand von 5-8 cm vor den Barcodescanner auf der rechten Seite des Gerätes zum Einlesen der Kassetteninformationen (Abb. 5-1).
 - Die rote Linie des Scanners sollte den gesamten Barcode abdecken.
 - Ein Signalton und eine grüne Statusanzeige zeigen die Gültigkeit des eingelesenen Barcodes an.
 - Eine rote Statusanzeige zeigt einen ungültigen Barcode an (z.B. Überschreiten des Kassettenverfallsdatums).
 Die Analysatoranzeige zeigt detaillierte Informationen zum Kassettenstatus an (siehe Kapitel 8, Fehlerdiagnose).
- HINWEIS: Zur Handhabung der gekühlten Kassetten beachten Sie bitte die Anweisungen auf dem Beipackzettel der Kassettenpackung.
- HINWEIS: Wenn der Barcode beschädigt oder unleserlich ist, drücken Sie auf <Manuelle Eingabe> und geben die Barcodeziffern mit Hilfe der Bildschirm-Tastatur ein.

Abb. 5-3 Letzte Eingabe

Abb. 5-4 Benutzer-ID eingeben

Abb. 5-5 Profil wählen

- Wenn die Kassette aus derselben Charge wie die Kassette der vorherigen Messung stammt, und die Option <Letzten Barcode aktivieren> in den Einstellungen aktiviert ist (s. Abschnitt 3.2.2.2), muss der Barcode nicht erneut eingelesen werden. Sie können dann die Schaltfläche <Letzte Eingabe> drücken (Abb. 5-3) und die Kassetteninformationen der letzten Messung aufrufen. Das Gerät identifiziert die Chargennummer und fordert Sie auf, die Klappe zu öffnen, die Kassette abzuwischen und einzulegen und die Klappe zu schließen.
- Während der Aufwärmphase überprüft der Analysator den Gasdruck. Sobald der Gasdruck auf 5 % abfällt, wird der Wert rot angezeigt. Es erscheint dann eine Warnmeldung und Aufforderung zum Installieren einer neuen Gasflasche (siehe Kapitel 7.5.1). Dieselbe Anzeige erscheint auch, wenn die Gasflasche nicht richtig eingesetzt ist.
- Ist die Funktion <Nicht geschützte Benutzer-ID> in den Sicherheitseinstellungen aktiviert (siehe Abschnitt 3.2.3), werden Sie dann aufgefordert, die Benutzer-ID einzugeben (Abb. 5-4).
- HINWEIS: Benutzer-Identifikationskarten können in diesem Menü auch über den Barcodescanner eingelesen werden.
- Wenn in den System-<Einstellungen> Testprofile eingerichtet wurden (siehe Abschnitt 3.2.2.7), erscheint der Bildschirm
 <Zu messendes Profil wählen> (Abb. 5-5) mit einer Liste der für diese Messkassette verfügbaren Testprofile.
- Wählen Sie das gewünschte Profil und drücken Sie auf

Messung>F Bereit	aramet R	er Wählen 12:41	30-Jun
Р	arame	ter wählen	
pН	v	Ca++	V
PCO2	V	Glu	
PO2	•	Urea/BUN	
Na+	•	Lac	
K+	•	tHb	•
CI-		S02	•
Abbrechen OK			

Abb. 5-6 Parameter deaktivieren

Abb. 5-7 Klappe öffnen

Abb. 5-8 Kassette einsetzen

- Wenn in den System-<Einstellungen> die Option <Parameterwahl zulassen> aktiviert ist (s. Abschnitt 3.2.2.2), erscheint der Bildschirm <Parameter wählen> (Abb. 5-6) und gibt Ihnen die Möglichkeit, die Ergebnisanzeige bestimmter Parameter für die aktuelle Messung zu aktivieren.
- Wählen Sie die gewünschten Parameter und drücken Sie auf
- 5. Drücken Sie die rote Öffnungstaste zum Öffnen der Messkammerklappe (Abb. 5-7).
- 6. Setzen Sie dann die Kassette wie folgt ein:
 - Öffnen Sie die OPTI Kassettenpackung, und entnehmen Sie die Kassette (Abb. 5-8).
 Nach dem Öffnen der Packung muss die Kassette sofort wie folgt in die Messkammer eingelegt werden.
- HINWEIS: Die Kassette sollte sofort nach Öffnen der Packung gemessen werden. Wird die Kassette nicht innerhalb von 15 Minuten (2 Minuten bei B-Lac Kasssetten*) nach Öffnen der Packung gemessen, kann sie zur Messung nicht mehr verwendet werden.
- HINWEIS: Zur Probeneingabe mit einem Kapillarröhrchen, einer Saugröhre oder einem ComfortSampler muss vor dem Einsetzen der Kassette der Spritzenadapter entfernt werden.
 - Wischen Sie vorsichtig beide Seiten der Kassette mit einem trockenen, sauberen Tuch ab, um übermäßige Feuchtigkeit zu entfernen (Abb. 5-8).
 - Legen Sie die Kassette in die Kammer ein (Abb. 5-8), und drücken Sie sie fest nieder, um einen festen Sitz zu garantieren.

^{*} Dieses Produkt ist zur Zeit in Deutschland nicht erhältlich.

Abb. 5-9 Klappe schließen

Messung		
Messung 🖞 🖏	01:18 11-Dez	
Kassette wird kalibriert - Bitte warten Kalibriervorgang 36 %		
Patienten- Informationen	Letzte Patienten- Informationen	

Abb. 5-10 Kalibrierung

- Schließen Sie die Messkammerklappe, indem Sie sie fest nach unten drücken (Abb. 5-9). Die grüne Statusanzeige blinkt, was bedeutet, dass die Probenkammerklappe jetzt nicht geöffnet werden darf.
- HINWEIS: Wird die Probenklappe geöffnet, während die grüne Statusanzeige blinkt, wird die Kassettenkalibrierung abgebrochen, und die Kassette muss ungenutzt entsorgt werden.
- Das System prüft jetzt die Unversehrtheit der Kassette und kalibriert dann (Abb. 5-10).
 Weitere Informationen zur Kalibrierung finden Sie in Kapitel 4 "Kalibrierung und Qualitätskontrolle".
- HINWEIS: Die Kalibrierung bleibt für alle Kassettenarten mit Ausnahme der B-Lac-Kassette* 10 Minuten lang gültig. Bei B-Lac-Kassetten bleibt die Kalibrierung nur 2 Minuten lang gültig. 1 Minute vor dem Ablaufen der Kalibrierung ertönt ein Signalton. Danach erscheint die Aufforderung, die Kassette ungenutzt zu entsorgen.
- HINWEIS: Wenn tHb/SO₂ deaktiviert sind (siehe Abschnitt 3.3.2.2), kann die Probe jederzeit während des Kalibriervorganges angesteckt werden. Nach Drücken von wird die Probe dann automatisch eingesaugt und der Messvorgang beginnt.

^{*} Dieses Produkt ist zur Zeit in Deutschland nicht erhältlich.

Abb. 5-11 E-Lyte CCA Kassette -Probenröhrchen

Abb. 5-12 E-Lyte CCA Kassette -Kapillarröhrchen

Abb. 5-14 Saugröhre anstecken

- Bei der Verwendung einer E-Lyte CCA Kassette erscheint jetzt ein Bildschirm, der den im **<Probenbehälter>**-Menü (s. Abschnitt 3.2.2.8) gewählten Probenbehälter anzeigt (Abb. 5-11).
- Wenn nötig, kann der Probenbehälter während der Kalibrierung geändert werden (Abb. 5-12 und 5-13).

Abb. 5-13 E-Lyte CCA Kassette -Spritze

 Wird bei der E-Lyte CCA Kassette die Option **Probenröhrchen>** gewählt, werden Sie aufgefordert die Saugröhre anzustecken (Abb. 5-14).

Abb. 5-15 Saugröhre anstecken

 Entfernen Sie den roten Spritzenadapter von der Kassette und führen Sie das kürzere Ende der Saugröhre in den Kassetten-Füllmund ein. Halten Sie die Saugröhre nach unten (Abb. 5-15).

Abb. 5-16 Probenröhrchen platzieren

 Nach einer erfolgreichen Kalibrierung hört die Statusanzeige auf zu blinken und der Benutzer wird aufgefordert, die Probenröhre zu platzieren (Abb. 5-16).

Abb. 5-17 Probenröhrchen platzieren

 Führen Sie die Saugröhre in das Probenröhrchen ein (Abb. 5-17) und drücken Sie
 Die Probe wird dann eingesaugt.

Abb. 5-18 Probe entfernen

Messung	at to the Date		
Messung 🦞 🖏	01:18 11-Dez		
Kassette wird kalibriert - Bitte warten			
Kalibriervorgang			
Railbrief vorgang	20/		
36%			
Patienten- Informationen	Letzte Patienten- Informationen		

Abb. 5-19 Patienten-Informationen

- 11. Sobald die Probenflüssigkeit den ersten Sensor erreicht hat, werden Sie aufgefordert, die Probe von der Saugröhre zu entfernen (Abb. 5-18).
 - Entfernen Sie die Probe und drücken Sie
 - Wird die Probe entfernt und ______ zur Bestätigung gedrückt, überführt der Analysator die Probe dann vollständig aus der Saugröhre in die Kassette zur Messung.
 - Wird nicht gedrückt, ertönt nach 20 Sekunden 10 Sekunden lang alle
 2 Sekunden ein Piepton, um den Benutzer daran zu erinnern, das Entfernen der Probe zu bestätigen.
 - Nach 30 Sekunden fährt das Gerät automatisch mit dem Messvorgang fort.
- 12. Zur Eingabe von Patientendaten während der Kalibrierung kann die Schaltfläche **<Patienten-**Informationen> gedrückt werden (Abb. 5-19).
 - Wurde in den System-<Einstellungen> die Option <Letzte Patienten-Info aktivieren> aktiviert (s. Abschnitt 3.2.2.2), können Sie die Patientendaten der vorherigen Messung durch Drücken der Schaltfläche <Letzte Patienten-Informationen> (Abb. 5-19) aufrufen und für die aktuelle Messung übernehmen.
 - Ist die Option <Geschützte Benutzer-ID> Schutz aktiviert, wird die Benutzer-ID des angemeldeten Benutzers im Benutzer-ID-Feld angezeigt. Alle Vorgabe-Patientendaten der letzten Messung können bearbeitet werden.
 - Versichern Sie sich, dass Patienten-ID und alle anderen Eingabeparameter für die aktuelle Messung zutreffend sind.
 - Drücken Sie die Schaltfläche <Patienten-Informationen> zur Eingabe neuer Patientendaten, wenn Sie die Patientendaten der letzten Messung nicht übernehmen oder bearbeiten möchten.

Messung>Patienten	daten
Bereit 😽	11:10 08-Mär
Patienten-ID(*)	
	1
Auftragsnr.	
	1
Geburtsdatum	Geschlecht
2	Unbekannt 💌
Temperatur	
98.6 F	
	0%
	JI 0 %

Abb. 5-20 Patientendaten

 Das **Patientendaten>**-Eingabemenü (Abb. 5-20) enthält die Optionen, die im **Einstellungen>**-Menü eingerichtet wurden (s. Abschnitt 3.2.2.1).

Die folgenden Optionen sind voreingestellt:

- Patienten-ID (25 alphanumerische Zeichen)
- Auftragsnummer (25 numerische Zeichen)
- Geburtsdatum
- Temperatur (Vorgabewert 37.0 °C)
- Geschlecht (unbekannt, männlich oder weiblich)
- 14. Zur Eingabe von Patientendaten drücken Sie auf (Abb. 5-20) und geben die gewünschten Informationen über die Bildschirm-Tastatur ein. Patienten-Identifikationen und Auftragsnummern können auch mit Hilfe des Barcodescanners eingegeben werden.
- Drücken Sie auf <u>vor</u> zum Aufrufen weiterer Patientendaten-Eingabemenüs, sofern diese in den Einstellungen eingerichtet wurden (s. Abschnitt 3.2.2.1).
- HINWEIS: Bei Patientendaten, die in den Einstellungen als <Obligatorisch> eingerichtet wurden, kann das Menü erst nach Eingabe der erforderlichen Informationen verlassen werden.
- 16. Nach Abschluss der Patientendaten-Eingabe drücken Sie auf (Abb. 5-20).

Abb. 5-21 Probe eingeben

Abb. 5-22 Kapillarprobe anstecken

Abb. 5-23 Probenmessung

17. Bei allen anderen Kassettenarten und Probenbehältern (Ausnahme E-Lyte CCA Kassette mit Probenröhrchen Option), erscheint nach einer erfolgreichen Kalibrierung die folgende Anzeige (Fig. 5-21). Die Statusanzeige hört auf zu blinken, und der Benutzer wird aufgefordert, die Probe zu mischen und einzugeben.

Mischen Sie die Spritzenprobe gründlich, indem Sie sie zwischen den Handflächen hin- und herrollen und sie mehrmals umdrehen.

- Die Sedimentation der roten Blutkörperchen verändert die tHb-Werte. Die Probe muss daher vor der Analyse sehr gründlich gemischt werden.
- Bei Benutzung einer Spritze muss sichergestellt werden, dass die Spitze des roten Einsaugadapters den Spritzenkolben nicht berührt.
- Die Probe wird mit einem Kapillarröhrchen, einer Spritze oder einem ComfortSampler an den Einfüllmund der Kassette angesteckt Drücken Sie
 (Abb. 5-21).
 - Bei der Verwendung von Kapillarröhrchen müssen diese fest in den Einfüllmund gedrückt werden (Abb. 5-22).

VORSICHT: Die Probe darf nicht injiziert werden! Sie wird automatisch eingesaugt.

- Die Probe wird dann eingesaugt und gemessen (Abb. 5-23). Während der Messung blinkt die Statusanzeige, und die verbleibende Messzeit wird mit einem Statusbalken angezeigt.
- Wird die Probenklappe während der Messung geöffnet, müssen sowohl Kassette als auch Probe ungenutzt entsorgt werden
- Während der Messung können wiederum durch Drücken der Schaltfläche **<Patienten-**Informationen> (Abb. 5-23) Patientendaten eingegeben werden. Folgen Sie hierzu den Anweisungen auf Seite 5-11.

Messung>Frae	hnisse	
Bereit	16:35 21-Mär	
Delet	10 10.55 21-Mai	
Messwerte Rechenwerte Kalibrierung		
рН	X.468	
PCO2	41.8 mmHg	
PO2	97.2 mmHg	
Na+	143.7 mmol/L	
K+	4.93 mmol/L	
Ca++	1.20 mmol/L	
tHb		
SO2		

Abb. 5-24 Messwerte

Messung>Ergebnisse			
Messung 🖞	6	01:21	11-Dez
Messwerte Rechenwerte Kalibrierung			
BE	18.1 ∎	mmoil	
tCO2	25.5	mmo	
HCO3	1 24.9 mmol/L		
stHCO3	Niedrig		
Hct(c)			
· · · · · ·			

Abb. 5-25 Rechenwerte

Messung	45	01:21	11-Dez
Messwerte Rechenwerte Kalibrierung			
Para- meter	Ergebnis	Bereiche	, tig/ L rig it.
pН	7.417	7.412 - 7.426	Gültig
PC02	41.2	39.8 - 41.8	Gültig
P02	92.9	90.8 - 94.8	Gültig

Abb. 5-26 Kalibrierwerte

Nach Beendigung der Messung hört die Statusanzeige auf zu blinken, und ein Signalton kündigt den Abschluss des Messvorgangs an.

Sie können weiterhin Patienteninformationen eingeben oder ändern. Nach Ablauf von drei Minuten werden die **<Messwerte>** automatisch angezeigt (Abb. 5-24).

- HINWEIS: Der Ausdruck beginnt automatisch, wenn die ersten Ergebnisse angezeigt werden. Das automatische Drucken von Messprotokollen nach einer Messung kann im Einstellungsmenü deaktiviert werden (siehe Abschnitt 3.2.4.1).
- HINWEIS: Sind in den Einstellungsmenü ASTM, POCT1 oder Wechselmedien für den Datenexport aktiviert (s. Abschnitt 3.2.4.5), werden die Ergebnisse erst nach Verlassen des Messmenüs gedruckt. Der Datenexport findet dann gleichzeitig statt. Weitere Informationen zum Drucken und Exportieren von Daten finden Sie in Kapitel 6 Datenmanagement

Das zweite Register zeigt die <Rechenwerte> an (Abb. 5-25).

Das dritte Register **<Kalibrierung>** zeigt die Ergebnisse der Gaskalibrierung, die vor der Messung durchgeführt wurde (Abb. 5-26).

20. Öffnen Sie die Klappe und entfernen Sie die Kassette.

VORSICHT: Nach dem Gebrauch enthält die Kassette Körperflüssigkeiten und sollte als medizinisches Abfallprodukt gehandhabt und nach den geltenden Vorschriften entsorgt werden.

- Wenn die Patiententemperatur eingegeben wurde, werden temperaturkorrigierte Blutgasund Rechenwerte angezeigt.
- Die Anzeige zeigt die Ergebnisse der benutzten Kassettenart an (s. Abschnitt 10.2 Sensorkassetten).

- Die Auflösung der Messwerte kann im Einstellungsmenü als HOCH (z.B. Na⁺ = 156.4 mmol/L) oder NIEDRIG (z.B. Na⁺ = 156 mmol/L) konfiguriert werden (s. Abschnitt 3.2.4.3).
- Der OPTI CCA-TS2 Analysator markiert Werte, die die vorprogrammierten Normalbereiche über- oder unterschreiten mit jeweils 1 AUF-↑ oder ABWÄRTS-↓ zeigenden Pfeil. Werte außerhalb der kritischen Bereich werden mit jeweils 2 Pfeilen (↑↑, ↓↓) angezeigt. Werte außerhalb der Normalbereiche werden gelb und Werte außerhalb der kritischen Bereiche rot angezeigt. Werte außerhalb des Messbereiches werden als HOCH oder NIEDRIG gekennzeichnet.
- Kann für einen bestimmten Parameter kein Wert ermittelt werden, erscheint die folgende Anzeige "----", und auf dem Druckprotokoll erscheint eine Fehlermeldung, die besagt, dass das Ergebnis unterdrückt wurde.
- Mögliche Messfehler werden durch eine blinkende Erbegnisanzeige mit "?" und entsprechender Markierung ("?") auf dem Druckprotokoll angezeigt. In diesem Fall sollte die Messung wiederholt werden.
- WARNUNG: Messergebnisse, die auf dem Messprotokoll als außerhalb der zulässigen Bereiche markiert werden, sollten unter keinen Umständen als Behandlungsgrundlage dienen.

6 D	ATENMANAGEMENT	6-1
6.1	Mess- und Statistikprotokolle drucken	6-1
6.1.1 6.1.2 6.1.3 6.1.4 6.1.5	Patienten-Messprotokolle SRC-Messprotokolle SRC-Statistikprotokolle QC-Messprotokolle	
6.2	Diagnostikprotokolle drucken	6-7
6.2.1 6.2.2 6.2.3 6.2.4	Patienten-Diagnostikprotokolle SRC-Diagnostikprotokolle QC-Diagnostikprotokolle Fehlerprotokolle	6-7 6-8 6-9 6-10
6.3	Verschiedene Protokolle	6-11
6.3.1	Wartungsprotokolle	6-11
6.4	Daten importieren und exportieren	6-12
6.4.1 6.4.2 6.4.3	Messergebnisse exportieren Konfigurationsdaten importieren/exportieren Datenbank exportieren	

6 DATENMANAGEMENT

Mit dem **<Daten-Manager>**-Menü können Sie Mess-, Diagnostik- und Statistikinformationen drucken. Es gibt Ihnen auch die Möglichkeit zum Datentransfer zu einem angeschlossenen Computer oder mittels USB-Massenspeicher.

6.1 Mess- und Statistikprotokolle drucken

6.1.1 Patienten-Messprotokolle

Abb. 6-1 Daten-Manager

Im **<Daten-Manager>**-Menü können Patienten-Messprotokolle gedruckt werden. Es können entweder einzelne Messergebnisse, Gruppen von Messergebnissen oder alle im Systemspeicher vorhandenen Ergebnisse gedruckt werden.

In der Vorgabe-Einstellung werden Messprotokolle automatisch nach jeder Messung gedruckt.

Informationen zum Ändern dieser Einstellungen finden Sie in Abschnitt 3.2.4.1.

1. Zum Drucken eines Messprotokolls wählen Sie **<Daten-Manager>** im Hauptmenü (Abb. 6-1).

Abb. 6-2 Patientenprotokoll

2. Im Register **<Messung>** wählen Sie **<Patienten>** (Abb. 6-2).

Daten>	Daten>Patientenmessung		
Berei	t 😼 17:11	21-Mär	
#	Patienten-ID	Datum	
1		21-Mär-13	
1			

Abb. 6-3 Patientenmessungen

Daten>Patientenmessung>Ansicht				
Bereit	R	16:35	5	21-Mär
Messwerte	lechenw	verte	Kali	brierung
pН	7.4	68		
PCO2	PCO2 41.8 mmHg		lg	
PO2	PO2 97.)7.2 mmHg	
Na+	143.7 mmol/L		ol/L	
K+	4.9	3 m	mo	I/L
Ca++	1.2	0 m	mo	I/L
tHb		_		
SO2				

Abb. 6-4 Messergebnisse

- Im Menü **<Patientenmessung>** (Abb. 6-3), wählen Sie die gewünschte Messung, und drücken Sie auf die Schaltfläche ur Anzeige der Messergebnisse (Abb. 6-4). Die Sortierfolge innerhalb der einzelnen Spalten kann durch Drücken der Spaltenüberschrift von aufsteigend auf absteigend geändert werden.
- 4. Benutzen Sie die Schaltflächen oder nachsten Seiten mit Messergebnissen.
- 5. Zum Drucken eines Einzelergebnisses markieren Sie das gewünschte Ergebnis (Abb. 6-3).
- 6. Zum Drucken mehrerer Ergebnisse markieren Sie das erste zu druckende Ergebnis, drücken auf

und wählen dann das letzte zu druckende Ergebnis. Damit werden alle dazwischen liegenden Ergebnisse gewählt.

- 7. Drücken Sie auf 🚺 zur Wahl aller im Gerät gespeicherten Ergebnisse.
- 8. Drücken Sie auf 🔄, um die gewählten Ergebnisse zu drucken.
- 9. Die Patientendaten können durch Drücken von gelöscht werden.
- HINWEIS: Die Schaltfläche ist nur aktiv, wenn Benutzer berechtigt sind, Daten zu löschen (Benutzerberechtigungen siehe Abschnitt 3.2.3.1.3).
- Zur Rückkehr in die **<Daten>-**Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

6.1.2 SRC-Messprotokolle

Daten			
Bereit 🦞 😼	05:09 16-Dez		
Messung	Diagnostik		
Patienten	SRC		
QC	USB-Gerät auswerfen		
Verschiedene Protokolle			
Konfiguration	Wartung		

Abb. 6-5 SRC wählen

Abb. 6-6 SRC-Messungen

-			_	
Bereit	5	17:13	21-Mär	
Para- meter	Ergebnis	Bereiche	Gültig/ Ungült.	
pН	7.430	7.370 - 7.490	Gültig	
PC02	42.0	37.0 - 47.0	Gültig	
PO2	101.0	86.0 - 116.0	Gültig	
Na+	144.0	137.0 - 151.0	Gültig	
K+	4.90	4.50 - 5.30	Gültig	
CI-	109.0	104.0 - 114.0	Gültig	
Ca++	1.14	1.04 - 1.24	Gültig	
🖕 Zur	Jurück Seite 1 von 2 Vor			

Abb. 6-7 SRC-Ergebnisse

Im **<Daten-Manager>**-Menü können SRC-Messprotokolle gedruckt werden. Es können entweder einzelne Messergebnisse, Gruppen von Messergebnissen oder alle im Systemspeicher vorhandenen Ergebnisse gedruckt werden.

In der Vorgabe-Einstellung werden SRC-Messprotokolle automatisch nach jeder Messung gedruckt. Informationen zum Ändern dieser Einstellungen finden Sie in Abschnitt 3.2.4.1.

- Zum Drucken eines SRC-Messprotokolls wählen Sie <Daten-Manager> im Hauptmenü.
- 2. Im Register **<Messung>** wählen Sie **<SRC>** (Abb. 6-5).
- Im Menü **<SRC-Messung>** (Abb. 6-6), wählen Sie die gewünschte Messung, und drücken Sie auf die Schaltfläche zur Anzeige der Messergebnisse (Abb. 6-7).
- 4. Benutzen Sie die Schaltflächen oder nachsten Seiten mit Messergebnissen.
- 5. Zum Drucken eines Einzelergebnisses markieren Sie das gewünschte Ergebnis (Abb. 6-6).
- Zum Drucken mehrerer Ergebnisse markieren Sie das erste zu druckende Ergebnis, drücken auf und wählen dann das letzte zu druckende Ergebnis. Damit werden alle dazwischen liegenden Ergebnisse gewählt.
- 7. Drücken Sie auf 🚺 zur Wahl aller im Gerät gespeicherten Ergebnisse.
- 8. Drücken Sie auf 📄, um die gewählten Ergebnisse zu drucken.
- 9. Die SRC-Daten können durch Drücken von gelöscht werden.
- HINWEIS: Die Schaltfläche ist nur aktiv, wenn Benutzer berechtigt sind, Daten zu löschen (Benutzerberechtigungen siehe Abschnitt 3.2.3.1.3).
- Zur Rückkehr in die **<Daten>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

6.1.3 SRC-Statistikprotokolle

Daten>	Daten>SRC-Messung			
Berei	ereit 😽 17:13 21-Mär			
Level	Benutzer-ID	Datum		
1	JLR12121	21-Mär-13		
1	JLR12121	21-Mär-13		
1	JLR12121	21-Mär-13		
1	JLR12121	21-Mär-13		
1	JLR12121	21-Mär-13		
Statistiken				
	Remission			
1				

Abb. 6-8 SRC-Statistik

Abb. 6-9 SRC-Statistiken

Der OPTI CCA-TS2 ermöglicht Ihnen das Drucken von Statistikprotokollen der SRC-Messungen.

- 1. Im Hauptmenü wählen Sie **<Daten-**Manager> **<SRC>**.
- Im Menü <Daten>SRC-Messungen> drücken Sie auf die Schaltfläche
 <Statistiken> (Abb. 6-8).
- HINWEIS: Zum Drucken von Statistikprotokollen sind mindestens zwei Messungen pro Charge und Level erforderlich.
- Im Menü <Daten>SRC-Statistiken>

 (Abb. 6-9) drücken Sie auf und wählen ein <Anfangs>- und <End>-Datum für das Statistikprotokoll.
- 4. Wählen Sie <Level> und <Charge>.
- 5. Benutzen Sie die Schaltflächen oder nachsten seiten mit Messergebnissen.
- Zum Drucken einer bestimmten Charge markieren Sie die entsprechende Charge (Abb. 6-9).
- Zum Drucken mehrerer Chargen markieren Sie die erste zu druckende Charge, drücken auf und wählen dann die letzte zu druckende Charge. Damit werden alle dazwischen liegenden Chargen gewählt.

8. Drücken Sie auf vur Wahl aller im Gerät gespeicherten Ergebnisse.

- 9. Drücken Sie auf 🔚, um die gewählten Ergebnisse zu drucken.
- Zur Rückkehr in die **<Daten>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

6.1.4 QC-Messprotokolle

Abb. 6-10 QC wählen

Abb. 6-11 QC-Messungen

Daten>QC-Messung>Ansicht			
Bereit 😽		16:38	21-Mär
Para- meter	Ergebnis	Bereiche	Gültig/ Ungült.
pН	7.459	7.370 - 7.490	Gültig
PC02	42.9	35.0 - 45.0	Gültig
P02	99.3	88.0 - 118.0	Gültig
Na+	144.6	136.0 - 150.0	Gültig
K+	4.94	4.50 - 5.30	Gültig
Ca++	1.23	1.10 - 1.30	Gültig
tHb	14.3	12.2 - 15.2	Gültig
S02	88.6	87.0 - 93.0	Gültig

Abb. 6-12 QC-Ergebnisse

Im **<Daten-Manager>**-Menü können QC-Messprotokolle gedruckt werden. Es können entweder einzelne Messergebnisse, Gruppen von Messergebnissen oder alle im Systemspeicher vorhandenen Ergebnisse gedruckt werden.

In der Vorgabe-Einstellung werden QC-Protokolle automatisch nach jeder Messung gedruckt.

Informationen zum Ändern dieser Einstellungen finden Sie in Abschnitt 3.2.4.1.

- 1. Zum Drucken eines QC-Messprotokolls wählen Sie **<Daten-Manager>** im Hauptmenü.
- 2. Im Register **<Messung>** wählen Sie **<QC>** (Abb. 6-10).
- Im Menü <QC-Messung> (Abb. 6-11), wählen Sie die gewünschte Messung, und drücken Sie auf die Schaltfläche er zur Anzeige der QC-Ergebnisse (Abb. 6-12).
- 4. Benutzen Sie die Schaltflächen oder und zur Anzeige der vorherigen oder nächsten Seiten mit Messergebnissen.
- 5. Zum Drucken eines Einzelergebnisses markieren Sie das gewünschte Ergebnis (Abb. 6-11).
- Zum Drucken mehrerer Ergebnisse markieren Sie das erste zu druckende Ergebnis, drücken auf und wählen dann das letzte zu druckende Ergebnis. Damit werden alle dazwischen liegenden Ergebnisse gewählt.
- 7. Drücken Sie auf vur Wahl aller im Gerät gespeicherten Ergebnisse.
- 8. Drücken Sie auf 🔚, um die gewählten Ergebnisse zu drucken.
- 9. Zum Löschen von QC-Daten drücken Sie 📠

HINWEIS: Die Schaltfläche ist nur aktiv, wenn Benutzer berechtigt sind, Daten zu löschen (Benutzerberechtigungen siehe Abschnitt 3.2.3.1.3).

 Zur Rückkehr in die **<Daten>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

6.1.5 QC-Statistikprotokolle

Abb. 6-13 QC-Statistiken

Abb. 6-14 QC-Statistiken

Der OPTI CCA-TS2 ermöglicht Ihnen das Drucken von Statistikprotokollen der QC-Messungen.

- 1. Im Hauptmenü wählen Sie **<Daten-Manager> <QC>**.
- Im Menü **<Daten>QC-Messungen>** drücken Sie auf die Schaltfläche **<Statistiken>** (Abb. 6-13).
- HINWEIS: Zum Drucken von Statistikprotokollen sind mindestens zwei Messungen pro Charge und Level erforderlich.
- Im Menü <Daten>QC-Statistiken>

 (Abb. 6-14) drücken Sie auf und wählen ein <Anfangs>- und <End>-Datum für das Statistikprotokoll.
- 4. Wählen Sie **<Level>** und **<Charge>**.
- 5. Benutzen Sie die Schaltflächen oder nachsten Seiten mit Messergebnissen.
- 6. Zum Drucken einer bestimmten Charge markieren Sie die entsprechende Charge (Abb. 6-14).
- 7. Zum Drucken mehrerer Chargen markieren Sie die erste zu druckende Charge, drücken auf

und wählen dann die letzte zu druckende Charge. Damit werden alle dazwischen liegenden Chargen gewählt.

- 8. Drücken Sie auf 🚺 zur Wahl aller im Gerät gespeicherten Ergebnisse.
- 9. Drücken Sie auf 🔄, um die gewählten Ergebnisse zu drucken.
- Zur Rückkehr in die **<Daten>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

6.2 Diagnostikprotokolle drucken

6.2.1 Patienten-Diagnostikprotokolle

Abb. 6-15 Diagnostik

Abb. 6-16 Messung wählen

Daten>Pa	Daten>Patienten-Diagnostik>Ansicht			
Bereit	5	16:	41	21-Mär
Para- meter	fW	Drift	Т	w
pН	4386800	83.2	22	99.3
PC02	4816160	47.9	12	99.9
P02	6681190	-31.8	18	109.2
Na+	1206140	-11.5	18	102.3
K+	1011610	-1.4	16	102.0
Ca++	1750060	-6.5	16	100.7
, 				
		_		

Abb. 6-17 Patientendiagnostik

Das <Patienten-Diagnostikprotokoll> enthält

Informationen zu Messsignalen und möglichen Abweichungen.

Es können entweder einzelne Messergebnisse, Gruppen von Messergebnissen oder alle im Systemspeicher vorhandenen Ergebnisse gedruckt werden.

- Zum Drucken eines Patienten-Diagnostikprotokolls wählen Sie **<Daten-Manager>** im Hauptmenü.
- 2. Im Register **<Diagnostik>** wählen Sie **<Patienten>** (Abb. 6-15).
- Im Menü <Patientendiagnostik> (Abb. 6-16), wählen Sie die gewünschte Messung, und drücken Sie auf die Schaltfläche zur Anzeige der Messergebnisse (Abb. 6-17).
- 4. Benutzen Sie die Schaltflächen oder und zur Anzeige der vorherigen oder nächsten Seiten mit Messergebnissen.
- 5. Zum Drucken eines Einzelergebnisses markieren Sie das gewünschte Ergebnis (Abb. 6-16).
- Zum Drucken mehrerer Ergebnisse markieren Sie das erste zu druckende Ergebnis, drücken auf und wählen dann das letzte zu druckende Ergebnis. Damit werden alle dazwischen liegenden Ergebnisse gewählt.
- 7. Drücken Sie auf 🚺 zur Wahl aller im Gerät gespeicherten Ergebnisse.
- Drücken Sie auf , um die gewählten Ergebnisse zu drucken.
- Zur Rückkehr in die **<Daten>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

6.2.2 SRC-Diagnostikprotokolle

Daten		
Bereit 😽	16:40 21-Mäi	r
Messung	Diagnostik	
Patienten	SRC	
QC		
Fehler	Datenbank	

Abb. 6-18 SRC wählen

Abb. 6-19 Messung wählen

Kanal	6M	Drift	eee
Nallai		Drift	JLL
1	3709880	0.08	0.002
2	3340950	0.07	0.003
3	3640650	0.06	0.002
4	3085400	-0.02	0.005
5	1982840	0.02	0.004
6	2136730	0.03	0.003

Abb. 6-20 SRC-Diagnostik

Das **<SRC-Diagnostikprotokoll>** enthält Informationen zu Messsignalen und möglichen Abweichungen.

Es können entweder einzelne Messergebnisse, Gruppen von Messergebnissen oder alle im Systemspeicher vorhandenen Ergebnisse gedruckt werden.

- 1. Zum Drucken eines SRC-Diagnostikprotokolls wählen Sie **<Daten-Manager>** im Hauptmenü.
- 2. Im Register **<Diagnostik>** wählen Sie **<SRC>** (Abb. 6-18).
- Im Menü **<SRC-Diagnostik>** (Abb. 6-19), wählen Sie die gewünschte Messung, und drücken Sie auf die Schaltfläche zur Anzeige der Messergebnisse (Abb. 6-20).
- 4. Benutzen Sie die Schaltflächen oder nachsten Seiten mit Messergebnissen.
- 5. Zum Drucken eines Einzelergebnisses markieren Sie das gewünschte Ergebnis (Abb. 6-19).
- Zum Drucken mehrerer Ergebnisse markieren Sie das erste zu druckende Ergebnis, drücken auf und wählen dann das letzte zu druckende Ergebnis. Damit werden alle dazwischen liegenden Ergebnisse gewählt.
- 7. Drücken Sie auf 🚺 zur Wahl aller im Gerät gespeicherten Ergebnisse.
- 8. Drücken Sie auf 📄, um die gewählten Ergebnisse zu drucken.
- Zur Rückkehr in die **<Daten>-**Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

6.2.3 QC-Diagnostikprotokolle

Abb. 6-21 QC wählen

Abb. 6-22 Messung wählen

Daten>Q	Daten>QC-Diagnostik>Ansicht			
Bereit	5	16:	43	21-Mär
Para- meter	fW	Drift	т	w
pН	4512700	65.9	12	99.8
PC02	4786810	5.8	10	100.3
P02	6469980	-49.7	14	105.8
Na+	1194200	-24.0	14	101.2
K+	1020880	-3.1	14	100.9
Ca++	1726870	-11.1	10	100.4

Abb. 6-23 QC-Diagnostik

Das **<QC-Diagnostikprotokoll>** enthält Informationen zu Messsignalen und möglichen Abweichungen.

Es können entweder einzelne Messergebnisse, Gruppen von Messergebnissen oder alle im Systemspeicher vorhandenen Ergebnisse gedruckt werden.

- 1. Zum Drucken eines QC-Diagnostikprotokolls wählen Sie **<Daten-Manager>** im Hauptmenü.
- Im Register <Diagnostik> wählen Sie <QC> (Abb. 6-21).
- Im Menü <QC-Diagnostik> (Abb. 6-22), wählen Sie die gewünschte Messung, und drücken Sie auf die Schaltfläche zur Anzeige der Messergebnisse (Abb. 6-23).
- 4. Benutzen Sie die Schaltflächen oder nachsten Seiten mit Messergebnissen.
- 5. Zum Drucken eines Einzelergebnisses markieren Sie das gewünschte Ergebnis (Abb. 6-22).
- Zum Drucken mehrerer Ergebnisse markieren Sie das erste zu druckende Ergebnis, drücken auf und wählen dann das letzte zu druckende Ergebnis. Damit werden alle dazwischen liegenden Ergebnisse gewählt.
- 7. Drücken Sie auf 🚺 zur Wahl aller im Gerät gespeicherten Ergebnisse.
- Drücken Sie auf , um die gewählten Ergebnisse zu drucken.
- Zur Rückkehr in die **<Daten>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

6.2.4 Fehlerprotokolle

Daten	
Bereit 😽	16:40 21-Mär
Messung	Diagnostik
Patienten	SRC
QC	
Fehler	Datenbank

Abb. 6-24 Fehler wählen

Daten>Fe	ehler		
Bereit	5	16:44	21-Mär
- Fehler	protokoll –		
<u></u>	Drucken	Lö	schen
1]	

Abb. 6-25 Fehlerprotokoll

Datenbank		
Fehlerprot	okoll löschen?	
Ja	Nein	

Abb. 6-26 Fehlerprotokoll löschen

Das Fehlerprotokoll zeigt alle in der Datenbank aufgezeichneten Fehlermeldungen an.

- 1. Zum Drucken eines Fehlerprotokolls wählen Sie **<Daten-Manager>** im Hauptmenü.
- Im **<Daten>**-Menü drücken Sie auf das Register **<Diagnostik>** und wählen **<Fehler>** (Abb. 6-24).
- 3. Drücken Sie auf Drucken zum Drucken des Fehlerprotokolls (Abb. 6-25).
- 4. Zum Löschen der Fehlerdatenbank drücken Sie auf Löschen.
- HINWEIS: Die Schaltfläche Löschen ist nur aktiv, wenn Benutzer berechtigt sind, Daten zu löschen (Benutzerberechtigungen siehe Abschnitt 3.2.3.1.3).
- Bestätigen Sie Ihre Wahl durch Drücken von in der Anzeige **<Fehlerprotokoll** löschen?> (Abb. 6-26).
- Zur Rückkehr in die **<Daten>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

6.3 Verschiedene Protokolle

6.3.1 Wartungsprotokolle

Abb. 6-27 Wartung

Daten>Wartung Bereit 😽	16:45 21-Mär
- Wartung	
Drucken	Löschen

Abb. 6-28 Wartungsprotokoll

Datenbank			
Wartungsprotokoll löschen?			
Ja Nein			

Abb. 6-29 Wartungsprotokoll löschen

Das Wartungsprotokoll zeigt alle Wartungsaktionen an, die über das **<Wartungs>**-Menü ausgeführt wurden (siehe Abschnitt 7.2, 7.3 und 7.4.1).

- 1. Zum Drucken eines Wartungsprotokolls wählen Sie **<Daten-Manager>** im Hauptmenü.
- Im **<Daten>**-Menü drücken Sie auf das Register **<Messung>** und wählen **<Wartung>** (Abb. 6-27).
- 3. Drücken Sie auf Drucken zum Drucken des Wartungsprotokolls (Abb. 6-28).
- Zum Löschen der Wartungsdatenbank drücken Sie auf <u>Löschen</u>.

HINWEIS: Die Schaltfläche Löschen ist nur aktiv, wenn Benutzer berechtigt sind, Daten zu löschen (Benutzerberechtigungen siehe Abschnitt 3.2.3.1.3).

- Bestätigen Sie Ihre Wahl durch Drücken von ^{Ja} in der Anzeige **<Wartungsprotokoll löschen?>** (Abb. 6-29).
- Zur Rückkehr in die **<Daten>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

6.4 Daten importieren und exportieren

Der OPTI CCA-TS2 ermöglicht eine Datenübertragung von Patienten- und QC-Informationen an einen angeschlossenen Computer oder ein KIS/LIS.

Bevor Daten an einen Computer gesendet werden können, muss der Datenübertragungsanschluss des OPTI CCA-TS2 konfiguriert (siehe Abschnitt 3.2.4.5) und das Gerät an einen Computer angeschlossen werden.

6.4.1 Messergebnisse exportieren

Abb. 6-30 Daten wählen

Daten>SRC-Messung			
Berei	t 😼 17:13	3 21-Mär	
Level	Benutzer-ID	Datum	
1	JLR12121	21-Mär-13	
	Statistiken		

Abb. 6-31 Daten exportieren

- 1. Zum Exportieren von Messergebnissen wählen Sie **<Daten-Manager>** im Hauptmenü.
- 2. Im Register **<Messung>** wählen Sie **<Patienten>**, **<SRC>** oder **<QC>** (Abb. 6-30).

 Wählen Sie die zu exportierenden Daten und drücken Sie auf zum Übertragen der gewählten Daten (Abb. 6-31).

HINWEIS: Daten werden in dem in den Einstellungen gewählten Übertragungsformat übertragen (siehe Abschnitt 3.2.4.5)

Exportieren	_	
Daten exp	ortieren?	
Ja	Nein	

Abb. 6-32 Daten exportieren

Abb. 6-33 USB-Gertät entfernen

4. Eine Meldung wird angezeigt, und fordert Sie auf, den Datenexport zu bestätigen (Abb. 6-32).

 Wird zum Datenexport ein USB-Massenspeicher verwendet, müssen Sie nach dem Speichern der Daten auf das USB-Symbol ↓ in der Statusanzeige am oberen Bildschirmrand (Abb. 6-33) oder die Schaltfläche <**USB-Gerät** auswerfen> drücken, um das USB-Gerät sicher zu entfernen.

USB-Massenspeicher	_
USB-Gerät sich	ner entfernen
Ja	Nein

Abb. 6-34 USB-Gertät entfernen

- 6. Dann erscheint eine Aufforderung zum Entfernen des USB-Geräts (Abb. 6-34).
 Wählen Sie Ja, um das USB-Gerät sicher zu entfernen. Eine Anzeige erscheint, wenn das USB-Gerät entfernt werden kann.
- Zur Rückkehr in die **<Daten>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

6.4.2 Konfigurationsdaten importieren/exportieren

Daten		
Bereit 🦞 🖏	05:09 16-Dez	
Messung	Diagnostik SRC	
Patienten		
QC	USB-Gerät auswerfen	
Verschiedene Proto	kolle	
Konfiguration	Wartung	

Abb. 6-36 USB-Gerät anstecken

Mit dieser Funktion können Konfigurationsdaten im XML-Format importiert oder exportiert werden. Diese Datei enthält alle Einstellungsinformationen, die in jedes beliebige Gerät importiert werden können.

- Zum Importieren oder Exportieren von Kofigurationsdaten wählen Sie <Daten-Manager> im Hauptmenü.
- 2. Im Register **<Messung>** wählen Sie **<Konfiguration>** (Abb. 6-35).
- HINWEIS: Bei den Werkseinstellungen (FSet) ist nur ein Datenexport und kein Datenimport möglich.
- 3. Nach Aufforderung stecken Sie ein USB-Gerät an und wählen **<Exportieren>** oder **<Importieren>** (Abb. 6-36).
- HINWEIS: Die Schaltflächen <Exportieren> und <Importieren> sind ausgegraut, wenn kein USB-Gerät angesteckt ist.
- Zum sicheren Entfernen des USB-Geräts drücken Sie auf das USB-Symbol ¹/₂ in der Statusanzeige am oberen Bildschirmrand oder die Schaltfläche **<USB-Gerät auswerfen>** (Abb. 6-35).
- Dann erscheint eine Aufforderung zum Entfernen des USB-Geräts (Abb. 6-37).
 Wählen Sie Ja, um das USB-Gerät sicher zu entfernen. Eine Anzeige erscheint, wenn das USB-Gerät entfernt werden kann.
- Zur Rückkehr in die **<Daten>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

6.4.3 Datenbank exportieren

Abb. 6-38 Datenbank wählen

Abb. 6-39 USB-Gerät anstecken

USB-Massenspeiche	r
USB-Gerät sic	her entfernen
Ja	Nein
Abb. 6-40 USE	- B-Gertät entferne

Mit dieser Funktion kann die Datenbank auf einen USB-Massenspeicher exportiert werden.

- 1. Zum Exportieren der Datenbank wählen Sie **<Daten-Manager>** im Hauptmenü.
- Drücken Sie auf das Register <Diagnostik> und wählen Sie <Databank> (Abb. 6-38).

3. Nach Aufforderung stecken Sie ein USB-Gerät an und wählen **<Exportieren>** (Abb. 6-39).

HINWEIS: Dieser Vorgang kann je nach Größe der Datenbank mehrere Minuten dauern.

- Zum sicheren Entfernen des USB-Geräts drücken Sie auf das USB-Symbol ♀ in der Statusanzeige am oberen Bildschirmrand.
- Dann erscheint eine Aufforderung zum Entfernen des USB-Geräts (Abb. 6-40).
 Wählen Sie Ja, um das USB-Gerät sicher zu entfernen. Eine Anzeige erscheint, wenn das USB-Gerät entfernt werden kann.
- Zur Rückkehr in die **<Daten>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

7 V	VARTUNG	7-1
7.1	Tägliche Wartung	7-1
7.2	Wöchentliche Wartung	7-1
7.3	Vierteljährliche Wartung – tHb-Kalibrierung	7-2
7.4	Jährliche Wartung	7-6
7.4.1 7.4.2	Peristaltikpumpenkassette ersetzen Gas-Eingangs/-Ausgangsbuchse ersetzen	
7.5	Bedarfswartung	7-9
7.5.1	Gasflasche ersetzen	
7.5.2	Druckerpapier ersetzen	
1.5.3	Routinereinigung	

7 WARTUNG

7.1 Tägliche Wartung

Das OPTI* CCA-TS2 Gerät erfordert keine tägliche Wartung.

7.2 Wöchentliche Wartung

Einmal pro Woche muss die Probenmesskammer gereinigt werden. Öffnen Sie die Klappe und reinigen Sie die Oberfläche der Optik und die Unterseite der Klappe mit einem in verdünntem Alkohol oder verdünntem Bleichmittel getränkten, faserfreien Tuch. Stellen Sie sicher, dass jegliche Blutreste mit einer 10%-igen Bleichlösung entfernt werden. Für die Reinigung der kleineren Teile der Messkammer kann ein Wattestab benutzt werden.

System>Wartung	
Bereit 🖏 17:10	21-Mär
Wartung	
Pumpenwechsel	Fertig
Letzte Pumpeninstallation	
Reinigung	Fertig
Letzte Reinigung	
Einstellungen	

Abb. 7-1 Wartungseinstellungen

Wartung>Einst Bereit	ellungen	17:10	21-Mär
Hinweis: Pumpenwect	isel		
Hinweis: Rein	igung		
Reinigung	Wöche (•	ntlich	O
Abbrechen	Vorgal	be [Speichern

Abb. 7-2 Reinigungshinweis

Im OPTI CCA-TS2 können Erinnerungshilfen für die wöchentliche Reinigung eingestellt werden.

Alle Reinigungsvorgänge, die in diesem Menü gespeichert werden, werden nach ihrer Durchführung auf dem Wartungsprotokoll aufgezeichnet.

- 1. Im Hauptmenü wählen Sie **<System-**Manager> und dann **<Wartung>**.
- 2. Geben Sie die Benutzer-ID ein, wenn diese Funktion aktiviert ist.
- 3. Im **<Wartungs>**-Menü (Abb. 7-1), drücken Sie auf **<Einstellungen>**.
- 4. Im **<Einstellungen>**-Menü (Abb. 7-2), können Sie die Funktion **<Reinigungs**hinweis> wählen.

Wählen Sie **<Wöchentlich>** für die wöchentliche Reinigung oder **<Monatlich>**, wenn der Analysator nicht jede Woche benutzt wird.

Sie erhalten dann eine Benachrichtigung, wenn die wöchentliche oder monatliche Reinigung fällig ist.

 Nach Durchführung der Reinigung drücken Sie auf die Schaltfläche Fertig rechts neben der Option <**Reinigung>** (Abb. 7-1).

Das Datum der letzten Reinigung wird dann angezeigt.

7.3 Vierteljährliche Wartung – tHb-Kalibrierung

Abb. 7-3 Barcode einlesen

Abb. 7-4 Benutzer-ID eingeben

Abb. 7-5 Neuer Kalibrator

Der tHb-Kanal muss alle 3 Monate kalibriert werden. Diese Kalibrierung wird mit Hilfe der tHb-Kalibrierkassette durchgeführt. Die tHb-Kalibrierung prüft die Messoptik und -elektronik und korrigiert mögliche Abweichungen. Die tHb-Kalibrierkassette befindet sich im Aufbewahrungsfach des Analysators.

- 1. Im Hauptmenü halten Sie den unteren Barcodestreifen der tHb-Kalibrierkasette in einem Abstand von 5-8 cm vor den Barcodescanner auf der rechten Seite des Analysators (Abb. 7-3).
- HINWEIS: Die tHb-Kalibrierung kann auch vom QC-Menü aus durchgeführt werden. Drücken Sie hierzu <QC-Manager>QC>tHb-Kalibrator> und geben Sie dann den Barcode ein.
 - Die rote Linie des Scanners sollte den gesamten Barcode abdecken.
 - Ein Signalton ertönt, und die Statusanzeige leuchtet zur Bestätigung eines gültigen Barcodes grün auf.
- Wenn die Option **<Nicht geschützte** Benutzer-ID> in den Systemeinstellungen aktiviert ist, (siehe Abschnitt 3.2.3), werden Sie jetzt aufgefordert, eine Benutzer-Identifikation einzugeben (Abb. 7-4). Der Zugriff auf bestimmte Systemfunktionen kann in den Sicherheitseinstellungen beschränkt werden.
- HINWEIS: Benutzer-Identifikationen können in dieser Anzeige auch über den Barcodescanner eingegeben werden.
- Eine Warnmeldung zeigt an, wenn eine neue Kassettencharge benutzt wird (Abb. 7-5). Drücken Sie auf **<Weiter>**.

tHb	
Optik und Klappeninn	enseite reinigen
	ок

Abb. 7-6 Optik reinigen

 Reinigen Sie das Optikfenster und die Innenseite der Messkammerklappe vorsichtig mit einem weichen, faserfreien Tuch. Drücken Sie
 OK (Abb. 7-6).

Abb. 7-7 Klappe öffnen

5. Drücken Sie die rote Öffnungstaste zum Öffnen der Messkammerklappe (Abb. 7-7).

Abb. 7-8 Kassette einsetzen

 Wischen Sie beide Seiten der tHb-Kalibrator-Kassette mit einem sauberen, trockenen Tuch ab und versichern Sie sich, dass die Kassette sauber ist. Legen Sie die Kassette in die Messkammer ein, und drücken Sie diese nach unten. Stellen Sie sicher, dass die Kassette richtig eingesetzt ist (Abb. 7-8).

Abb. 7-9 Klappe schließen

QC>tHb		_	_
Messung	5	22:48	04-Jan
tHb-Ka Mess	ulibrierur ung 3	ng - Bitte v 3%	warten

Abb. 7-10 tHb-Kalibrierung

t⊔h k∕s Kassette	librierur	na Ritte w	ratten
Bit	te Kasse	tte entferne	n

Abb. 7-11 Kassette entfernen

7. Schließen Sie die Messkammerklappe (Abb. 7-9).

 Das Gerät stellt dann automatisch die Anwesenheit der Kalibrierkassette fest und beginnt mit dem Kalibriervorgang (Abb. 7-10).

- 8. Nach Abschluss der Kalibrierung werden Sie aufgefordert, die Messkammerklappe zu öffnen und die Kassette zu entfernen (Abb. 7-11).
- 9. Legen Sie die Kalibrierkassette sofort nach der Entnahme aus dem Gerät wieder in die Packung zurück.
 - HINWEIS: Kalibrierkassetten dürfen nur im selben Gerät wieder verwendet werden.
| | 🏷 OPTIN | Aedical |
|--------------|--------------|----------|
| OPTI CCA-TS2 | | |
| | HbCal-Prot | okoll |
| | TT-MMM-JJ I | H:MM |
| S/N: XXXX | (| |
| Version: X | .XX.XXXX | |
| Benutzer- | ID: | |
| Benutzer | 123 | |
| | | |
| HbCal-Ch | arge: XXXXXX | |
| VerfDatu | Im: MMM JJJJ | |
| HbCal-Da | tum: TT-MMM | -JJ |
| | | |
| Kalibriere | rgebnisse: | |
| | Messw. | Rechenw. |
| tHb | 12.9 | 13.0 |
| S02(%) | 74.6 | 74.9 |
| Kalibrierfa | aktoren: | |
| | ALT | NEU |
| F1 | 1.023 | 1.014 |
| F2 | 1.087 | 1.080 |
| F3 | 1.089 | 1.094 |
| F4 | 0.000 | 0.000 |
| F5 | 0.000 | 0.000 |
| G1 | | 1.062 |
| G2 | | 1.087 |
| G3 | | 1.082 |
| | | |

Abb. 7-12 HbCal-Protokoll

Abb. 7-13 Bereit-Anzeige

• Das Gerät druckt dann das tHb-Kalibrierprotokoll mit den alten und neuen Kalibrierergebnissen und -Faktoren (Abb. 7-12).

• Nach Beendigung der Kalibrierung erscheint die **Bereit>**-Anzeige im Hauptmenü (Abb. 7-13).

7.4 Jährliche Wartung

Zur Gewährleistung der Spitzenleistung des Analysators müssen einmal im Jahr die Peristaltikpumpenkassette und die Gas-Eingangs/-Ausgangsbuchse ersetzt werden.

7.4.1 Peristaltikpumpenkassette ersetzen

Abb. 7-14 Pumpenkassette entfernen

 Öffnen Sie die Druckerklappe. Die Peristaltikpumpe befindet sich rechts neben dem Drucker. Ergreifen Sie die beiden Enden des Gehäuses und ziehen Sie die Pumpe nach oben (Abb. 7-14).

- Ersetzen Sie die Pumpendichtungen nur wenn diese beschädigt oder verstopft sind. Entfernen Sie die alten Pumpendichtungen, indem Sie sie mit einer Gefäßklemme oder Pinzette vorsichtig ergreifen und nach oben ziehen (Abb. 7-15). Entsorgen Sie die alten Dichtungen.
 - VORSICHT: Beim Entfernen der Dichtungen ist darauf zu achten, dass die Anschlussnippel in der Ausnehmung nicht beschädigt werden.
 - Drücken Sie die neuen Pumpendichtungen mit der größeren Fläche nach oben fest in die Ausnehmung ein.
 - 4. Installieren Sie die neue Pumpenkassette, indem Sie die flache Seite der Motorachse so drehen, dass sie auf die flache Seite der Pumpenrollenöffnung (Keilnut) ausgerichtet ist. Drücken Sie die Kassette fest nach unten, bis sie vollständig im Gehäuse eingesetzt ist (Abb. 7-16).

Abb. 7-15 Pumpendichtungen

Abb. 7-16 Neue Kassette installieren

Abb. 7-17 Pumpenrolle eindrücken

System>Wartung Bereit 5 17:10	21-Mär
Wartung	
Pumpenwechsel	Fertig
Letzte Pumpeninstallation	
Reinigung	Fertig
Letzte Reinigung	
Einstellungen	

Abb. 7-18 Wartungseinstellungen

Wartung>Einstellungen Bereit 5 17:10 21-Mär			
Hinweis: Pumpenwech	sel		
Hinweis: Rein	igung		
Reinigung	Wöchent (•	lich	Monatlich C
Abbrechen	Vorgabe	· E	Speichern

Abb. 7-19 Pumpenwechsel

- Drücken Sie die Pumpenrolle nach unten, bis sie fest auf der Pumpenmotorachse aufsitzt (Abb. 7-17).
- 6. Führen Sie einen **<Pumpenmotortest>** durch (siehe Kapitel 8.2.16), um ein einwandfreies Funktionieren sicherzustellen. Stellen Sie sicher, dass sich die Pumpe gleichmäßig und ohne übermäßige Geräuschentwicklung dreht. Führen Sie dann eine QC-Messung durch, und stellen Sie sicher, dass diese fehlerfrei verläuft.

Im OPTI CCA-TS2 können Erinnerungshilfen für das Auswechseln der Peristaltikpumpe eingestellt werden.

Alle Wartungsvorgänge, die in diesem Menü gespeichert werden, werden nach ihrer Durchführung auf dem Wartungsprotokoll aufgezeichnet.

- 1. Im Hauptmenü wählen Sie **<System-**Manager> und dann **<Wartung>**.
- 2. Geben Sie die Benutzer-ID ein, wenn diese Funktion aktiviert ist.
- 3. Im **<Wartungs>**-Menü (Abb. 7-18) drücken Sie auf **<Einstellungen>**.
- Im <Einstellungen>-Menü (Abb. 7-19) können Sie die Funktion <Pumpenwechsel-Hinweis> wählen, um bei einem erforderlichen Pumpenwechsel eine Benachrichtigung zu erhalten.
- Nach Ersetzen der Peristaltikpumpe drücken Sie auf die Schaltfläche Fertig rechts neben der Option <Pumpenwechsel> (Abb. 7-18).

Sie werden dann aufgefordert das Herstellungsdatum einzugeben (DOM). Danach wird das Datum des letzten Pumpenwechsels angezeigt.

7.4.2 Gas-Eingangs/-Ausgangsbuchse ersetzen

Abb. 7-20 Gas E/A-Buchse

- Öffnen Sie die Messkammerklappe. Entfernen Sie die schwarze E/A-Buchse mit einer Gefäßklemme oder Pinzette (Abb. 7-20).
- 2. Installieren Sie die neue Gasanschlussbuchse mit der abgerundeten Fläche nach oben und drücken Sie sie in die Ausnehmung. Die vollständig eingesetzte Anschlussbuchse sollte ca. 3 mm über die Umrandungsflächen hervorstehen.
- Führen Sie einen <Pumpenmotortest> durch (siehe Kapitel 8.2.16), um ein einwandfreies Funktionieren sicherzustellen. Stellen Sie sicher, dass sich die Pumpe gleichmäßig und ohne übermäßige Geräuschentwicklung dreht. Führen Sie dann eine QC-Messung durch, und stellen Sie sicher, dass diese fehlerfrei verläuft.

7.5 Bedarfswartung

7.5.1 Gasflasche ersetzen

Abb. 7-21 Neue Gasflasche

Barcode				
Barcode für neue Gasflasche einlesen				
Manuell Abbrechen				

Abb. 7-22 Barcode einlesen

Gas	_	
	Bitte Gasfla	asche einsetzen
	ОК	Abbrechen

Abb. 7-23 Gasflasche einsetzen

Die Kalibriergasflasche ist für ca. 80 Probenmessungen (45 für B-Lac) ausgelegt. Wenn die nebenstehende Meldung erscheint, muss die Flasche ersetzt werden (Abb. 7-21).

Folgen Sie dazu den nachstehenden Anweisungen:

- 1. Drücken Sie **<Neue Gasflasche>**.
- 2. Drehen Sie die Flasche entgegen dem Uhrzeigersinn aus dem Gehäuse.
- 3. Entfernen Sie die Kappe der neuen Gasflasche.
- 4. Nach Aufforderung (Abb. 7-22) lesen Sie den Barcode der neuen Gasflasche ein. Halten Sie hierzu den Barcode auf der Packungsbeilage in einem Abstand von 5-8 cm vor den Barcodescanner auf der rechten Seite des Gerätes.
 - Die rote Linie des Barcodescanners sollte den gesamten Barcode abdecken.
 - Bei einem gültigen Barcode ertönt ein Signalton.
 - Notieren Sie das Installationsdatum auf der Flasche zu Kontrollzwecken.
- HINWEIS: Ist die Packungsbeilage nicht griffbereit, kann die Chargennummer auf dem Etikett der Gasflasche auch manuell eingegeben werden. Drücken Sie hierzu die Schaltfläche <Manuell> in der Anzeige <Barcode einlesen> (Abb. 7-22), und geben Sie die Chargennummer über den numerischen Tastenblock ein.
- HINWEIS: Die Gasflasche sollte immer mit verschlossener Kappe gelagert werden.
- HINWEIS: Der Barcode enthält das Verfallsdatum der Flasche. Zwei Wochen vor Ablauf des Verfallsdatums wird eine Warnmeldung ausgegeben.
- 5. Nach Aufforderung installieren Sie die neue Gasflasche (Abb. 7-23).

Abb. 7-24 Gasflasche installieren

Abb. 7-25 Neue Gasflasche

Abb. 7-26 Benutzungsdauer

Abb. 7-27 Hauptmenü

 Drehen Sie die Flasche im Uhrzeigersinn fingerfest in das Gehäuse (Abb. 7-24).
 Drücken Sie auf K. (Abb. 7-23).

- In der Anzeige <Neue Gasflasche?> (Abb. 7-25) drücken Sie
- HINWEIS: Wenn Sie eine gebrauchte Gasflasche wieder einsetzen, beantworten Sie die Frage <Neue Gasflasche?> mit

Nein Sie werden dann aufgefordert, die Benutzungsdauer der Gasflasche in Wochen einzugeben (Abb. 7-26). Hierbei erweist sich das auf der Flasche notierte Erstinstallationsdatum als nützlich.

- HINWEIS: Die Gasflasche läuft 6 Monate nach Installation oder nach Überschreiten des auf dem Etikett angegebenen Verfallsdatums ab.
- Der OPTI CCA-TS2 führt dann eine Gasspülung durch, was durch einen Statusbalken auf dem Bildschirm angezeigt wird, und kehrt dann ins Hauptmenü zurück (Abb. 7-27).

7.5.2 Druckerpapier ersetzen

Abb. 7-28 Druckerklappe öffnen

Abb. 7-29 Druckerpapier einlegen

Abb. 7-30 Druckerklappe schließen

7.5.3 Routinereinigung

Das Papier für den Thermodrucker enthält einen roten Anzeigestreifen, der das Ende der Rolle anzeigt. Zum Einsetzen einer neuen Papierrolle führen Sie die folgenden Schritte durch:

- 1. Drücken Sie die rote Entriegelungstaste auf der Druckerklappe zum Öffnen des Druckerfachs (Abb. 7-28).
- 2. Legen Sie die Papierrolle in die Papierschale ein.
- 3. Ziehen Sie das Ende der Papierrolle aus der Papierschale heraus (Abb. 7-29).
- Halten Sie das überstehende Ende der Papierrolle ausserhalb des Druckerfaches fest, und schließen Sie die Druckerklappe (Abb. 7-30).

Das Druckerpapier wird automatisch vom Drucker erfasst und weiter transportiert.

Die Wartungsanforderungen des OPTI CCA-TS2 Analysators sind minimal. Bei einer Routinereinigung werden die Außenflächen des Analysators einschließlich Bildschirm mit einem weichen, feuchten Tuch abgewischt.

- HINWEIS: Verwenden Sie keine Reinigungsmittel mit Ammoniak, mehr als 10% Bleichmittel oder andere scharfe Reinigungsmittel für den OPTI CCA-TS2 Analysator.
- HINWEIS: Reinigungssprays nicht direkt auf den Bildschirm sprühen.

 8.1 Fehler- und Warnmeldungen 8.1.1 Warnmeldungen 8.1.2 Fehlermeldungen 8.1.3 Stoppmeldungen 8.1.4 Nicht-Bereit-Meldungen 	8-1 8-7 8-13 8-14 8-17 8-17 8-19 8-20
 8.1.1 Warnmeldungen 8.1.2 Fehlermeldungen 8.1.3 Stoppmeldungen 8.1.4 Nicht-Bereit-Meldungen 	8-2 8-7 8-13 8-14 8-17 8-19 8-19 8-20
8.1.2 Fehlermeldungen8.1.3 Stoppmeldungen8.1.4 Nicht-Bereit-Meldungen	8-7 8-13 8-14 8-17 8-19 8-20
8.1.3 Stoppmeldungen8.1.4 Nicht-Bereit-Meldungen	8-13 8-14 8-17 8-19 8-20
8.1.4 Nicht-Bereit-Meldungen	8-14 8-17 8-19 8-20
6	8-17 8-19 8-20
8.1.5 Fatale Fehler	8-19 8-19 8-20
8.2 Diagnostik	8-19 8-20
8.2.1 Versionen überprüfen	8-20
8.2.2 Systemtemperaturen überprüfen	
8.2.3 Gasdruck überprüfen	8-20
8.2.4 LEDs überprüfen	8-21
8.2.5 Luftdruck überprüfen	8-21
8.2.6 Batteriespannung überprüfen	8-22
8.2.7 Kühlungsventilator überprüfen	8-22
8.2.8 Gasventil überprüfen	8-23
8.2.9 Drehventil überprüfen	8-23
8.2.10 Werkseinstellungen (FSet) überprüfen	8-24
8.2.11 Barcodescanner überprüfen	8-24
8.2.12 Drucker überprüfen	8-25
8.2.13 Optik überprüfen	8-26
8.2.14 Ethernet-Schnittstelle überprüfen	8-27
8.2.15 Pumpenförderung überprüfen	8-28
8.2.16 Pumpenmotor überprüfen	8-29
8.2.17 Anzeige überprüfen	8-29
8.2.18 Tastbildschirm (Touchscreen) überprüfen	8-30
8.2.19 Gastest	8-31
8.2.20 B-Lac-Einstellung	8-32
8.2.21 Kassettensensor überprüfen	8-34
8.3 Fehlersuche	8-35
8.3.1 Fehlerbehebungsverfahren für tHb/SQ	8-35

8.3.1	Fehlerbehebungsverfahren für tHb/SO ₂	8-	3	5
8.3.2	Fehlerbehebungsverfahren für Barcode-Scanner	8-	3	6

8 DIAGNOSTIK UND FEHLERSUCHE

Der OPTI* CCA-TS2 ist für einen störungsfreien Betrieb konzipiert. Es können jedoch in jedem Messgerät von Zeit zu Zeit Funktionsstörungen auftreten, die vom Benutzer erfordern, die Ursache des Problems ausfindig zu machen und Abhilfemaßnahmen zu ergreifen.

Das folgende Kapitel beschreibt Fehlermeldungen des OPTI CCA-TS2 und empfiehlt Abhilfemaßnahmen, die den Analysator wieder betriebsbereit machen sollten. Die Fehler werden im System gespeichert und können auf dem Fehlerprotokoll ausgedruckt werden (s. Abschnitt 6.2.4).

Sollten die in diesem Kapitel beschriebenen Maßnahmen keine Abhilfe schaffen, wenden Sie sich bitte an den OPTI Medical Kundendienst.

8.1 Fehler- und Warnmeldungen

Im OPTI CCA-TS2 können die folgenden Systemmeldungen angezeigt werden:

<WARNMELDUNGEN>

• Warnmeldungen zeigen bestimmte Systemzustände an, bei denen eine Aktion des Benutzers zur Beendigung der Messung erforderlich ist.

<FEHLERMELDUNGEN>

• Diese Meldungen zeigen das Auftreten von Fehlern beim Messvorgang an und erfordern eine Aktion des Benutzers zur Beendigung der Messung.

<STOPPMELDUNGEN>

• Diese Meldungen zeigen bestimmte Systemzustände an, die zum weiteren Betrieb des Gerätes behoben werden müssen.

<NICHT-BEREIT-MELDUNGEN>

• Diese Meldungen zeigen bestimmte Systemzustände an, bei denen eine Aktion des Benutzers zum weiteren Betrieb des Gerätes erforderlich ist.

<FATALE FEHLER>

• Diese Meldugen zeigen Systemzustände an, die einen Systemausfall verursachen und eine Reparatur des Systems erforderlich machen. Wenden Sie sich bitte an den Kundendienst.

8.1.1 Warnmeldungen

Aufnahme	
WARNUNG! - Keine Probe	
	_
Aufnahme	ļ
WARNUNG! - Keine Probe	
ок	

Kassette			
WARNUNG! - instabil - pH			
	Ablehnen Weiter		
Optik			
WARNUNG! - instabil - pH			

Kassette			
WARNUNG! - Defekter Sensor - pH			
Ablehnen	Weiter		

<WARNUNG! - Keine Probe> - Die Sensoren konnten keine Probe feststellen.

- Stellen Sie sicher, dass die Probe richtig angesteckt wurde, nicht koaguliert hat und sich keine Luftblasen gebildet haben.
- Warten Sie, bis das System nachkalibriert.
- Mischen Sie die Probe noch einmal gründlich.
- Drücken Sie und wiederholen Sie den Vorgang.

<WARNUNG! - Instabil - pH> - Der angezeigte Messwert ist instabil.

- HINWEIS: Bei dieser Meldung handelt es sich nur um eine Warnung. Das Ergebnis für den betreffenden Parameter wird jedoch angezeigt.
- Bei Laktatkassetten können Sie auf <u>Weiter</u> drücken, um mit der Messung fortzufahren oder auf <u>Ablehnen</u>, um die Messung abzubrechen.
- Bei allen anderen Kassetten drücken Sie
 OK , um mit der Messung fortzufahren.
- Nach Beendigung der Messung entfernen Sie die Kassette, und überprüfen Sie sie auf Luftblasen.
- Wenn sich über einem Sensor Luftblasen befinden, sollten die Messwerte für diesen Parameter nicht verwendet werden.

<WARNUNG! - Defekter Sensor - pH>

Der angezeigte Sensor ist defekt.

• Bei Laktatkassetten können Sie auf Weiter drücken, um mit der Messung fortzufahren oder

auf Ablehnen , um die Messung abzubrechen. Wenn Sie mit der Messung fortfahren, werden für den defekten Sensor keine Mess- oder Rechenergebnisse erstellt.

Optik	
WARNUNG! - Defek	ter Sensor - pH
	ок

Aufnahme	_	
WARNUNG! - Luftblase Kassette prüfen		
	ок	

Kalibrierung	_
WARNUNG! - Verschmutzte Optik Kassette/Optik reinigen	
	ок

Gas	_
WARNUNG	- Gas läuft ab
	ОК

Gastest		
WARNUNG! - Gastest Zum Abbrechen Strom aus-/einschalten		
OK Abbrechen		

 Bei allen anderen Kassetten drücken Sie
 OK, um mit der Messung fortzufahren. Für den defekten Sensor werden keine Ergebnisse angezeigt.

<WARNUNG! - Luftblase> - Die Lichtschranken haben eine Luftblase festgestellt.

- Entfernen Sie die Kassette und drücken Sie
 ^{OK} zum Fortsetzen des Vorgangs.
- Überprüfen Sie die Kassette auf Luftblasen. Sind Luftblasen vorhanden, wiederholen Sie die Proben- oder QC-Messung.

<WARNUNG! - Verschmutzte Optik>

Die Optik oder Kassette ist verschmutzt.

- Entfernen Sie die Kassette, und überprüfen Sie diese und die untere und obere Platte des Optikmoduls. Wenn nötig, reinigen Sie diese.
- Legen Sie die Kassette neu ein, und drücken Sie
 ^{OK} zur Wiederholung des Testvorgang.

<WARNUNG! - Gas läuft ab> - Das

Verfallsdatum der Gasflasche läuft in 2 Wochen ab.

• Drücken Sie <u>w</u>, und fahren Sie mit der Messung fort. Stellen Sie sicher, dass eine Ersatzgasflasche vorrätig oder bestellt ist.

WARNUNG! - Gastest> - Der Gastest darf nur von OPTI Medical Servicepersonal zur Überprüfung des Gassystems benutzt werden. Dieser Test dauert 2 Stunden und kann nur durch Ausschalten des Gerätes abgebrochen werden.

• Drücken Sie auf Abbrechen zum Abbrechen des Tests.

HINWEIS: Die Gasflasche läuft 6 Monate nach Installation oder nach Überschreiten des auf dem Etikett angegebenen Verfallsdatums ab.

Pumpe	
WARNUNG! - Pumpe prüfen Bitte Kassette entfernen	
	ок

Wartung	_	
WARNUNG - Pumpe ersetzen		
	ок	

Wartung	
WARNUNG - Reinigung erforderlich	
	ок
OK	

SRC	_
WARNUNG! -	SRC läuft ab
	ок

<WARNUNG! - Pumpe prüfen>

Die Peristaltikpumpe ist abgenutzt.

- Kassette entfernen und Messung mit neuer Sensorkassette wiederholen.
- Peristaltikpumpen-Kassette ersetzen. (Siehe Abschnitt 7.4.1).

<WARNUNG - Pumpe ersetzen>

Die Peristaltikpumpe muss ersetzt werden.

- Wenn im Wartungsmenü die Funktion Wartungshinweise aktiviert ist, erscheint diese Meldung einmal während einer Kassetteninstallation, wenn ein Pumpenwechsel fällig ist.
- Danach wird diese Meldung auf jedes Patienten- und QC-Protokoll gedruckt, bis der Pumpenwechsel erfolgt und dieser Vorgang durch Drücken der Schaltfläche Fertig im Wartungsmenü bestätigt wird. (Siehe Abschnitt 7.4.1).

<WARNUNG - Reinigung erforderlich>

Die Probenmesskammer muss gereinigt werden.

- Wenn im Wartungsmenü die Funktion Wartungshinweise aktiviert ist, erscheint diese Meldung einmal während einer Kassetteninstallation, wenn eine Reinigung fällig ist.
- Danach wird diese Meldung auf jedes Patientenund QC-Protokoll gedruckt, bis die Reinigung erfolgt und dieser Vorgang durch Drücken der Schaltfläche Fertig im Wartungsmenü bestätigt wird. (Siehe Abschnitt 7.4.1).

<WARNUNG! - SRC läuft ab>

Die SRC läuft in 2 Wochen ab.

• Drücken Sie or , und fahren Sie mit der Messung fort. Stellen Sie sicher, dass neue SRCs vorrätig oder bestellt sind.

SRC	
WARNUNG! - Neue SRC-Charge	
Abbrechen	Weiter

tHb	
WARNUNG - I läufi	Hb-Kalibrator t ab
	ок

<WARNUNG! - Neue SRC-Charge>

Diese Meldung erscheint, wenn eine neue SRC-Charge benutzt wird.

• Drücken Sie auf Weiter, um mit der Messung fortzufahren.

<WARNUNG! - Hb-Kalibrator läuft ab>

Die Hb-Kalibrierkassette läuft in 2 Wochen ab.

• Drücken Sie 🔍, und fahren Sie mit der Messung fort. Stellen Sie sicher, dass eine neue Kalibrierkassette vorrätig oder bestellt ist.

tHb	
WARNUNG! - Neuer tHb-Kalibrator	
Abbrechen Weiter	

B-Lac-Einstellung ... WARNUNG! - QC ungültig Messung wiederholen OK

<WARNUNG! - Neuer tHb-Kalibrator>

Diese Meldung erscheint, wenn eine neue Kalibrierkassette benutzt wird.

• Drücken Sie auf Weiter, um mit der Messung fortzufahren.

<WARNUNG! - QC ungültig>

Während einer B-Lac-Einstellung* war eine QC-Messung ungültig.

Drücken Sie
 Messung.

<WARNUNG! - Erforderliche Felder -Fehlende Daten eingeben>

Diese Warnung erscheint, wenn im **Einstellungen>**-Menü Patientendaten als **Obligatorisch>** eingerichtet wurden (Abschnitt 3.2.2), und diese Eingaben nicht gemacht werden.

• Drücken Sie ____, und geben Sie die erforderlichen Informationen ein.

^{*} B-Lac-Kassetten sind zur Zeit in Deutschland nicht erhältlich.

Benutzereingabe	_
WARNUNG! - Textlänge liegt unter der Zeichen-Mindestzahl	
	ок

<WARNUNG! - Textlänge liegt unter der Zeichen-Mindestzahl>

Diese Warnung erscheint, wenn im **Einstellungen>**-Menü für die Patienten-ID eine Mindest-Zeichenzahl eingerichtet wurde (Abschnitt 3.2.2.2), und die eingegebene Patienten-ID unter dieser Zeichenzahl liegt.

• Drücken Sie <u>v</u>, und geben Sie eine Patienten-ID mit der erforderlichen Anzahl an Zeichen ein.

8.1.2 Fehlermeldungen

Benutzereingabe	
Maximale Benutzeranzahl überschritten	
	ОК

Optik	_
FEHLER! - Defekte Sensoren Kassette entsorgen	
	ок

Pumpe	
FEHLER! - Verstopfung Kassette entsorgen	
ок	

B-	Lac-Einstellung	J	
FEHLER! - B-Lac-Einstellung ungültig			
	Wiederholen		Abbrechen

<Maximale Benutzeranzahl überschritten>

Die Zahl der Benutzer-Identifikationen im Systemspeicher hat das Maximum von 300 erreicht.

 Drücken Sie
 und löschen Sie nicht benutzte Benutzer-Identifikationen aus dem Systemspeicher (siehe Abschnitt 3.2.3.1.2)

<FEHLER! - Defekte Sensoren>

Zwei oder mehr Sensoren sind defekt.

 Drücken Sie or , entsorgen Sie die Kassette, und wiederholen Sie den Test mit einer neuen Kassette.

<FEHLER! - Verstopfung>

Auftreten eines Probenfehlers infolge einer Verstopfung, die die Probenaufnahme verhindert.

Drücken Sie or , und entsorgen Sie die Kassette.

<FEHLER! - B-Lac-Einstellung ungültig>

Diese Meldung erscheint, wenn die Reproduzierbarkeit der OPTI Check Kontrollen während der B-Lac-Einstellung* außerhalb des zulässigen Bereichs liegt.

- Wiederholen Sie die B-Lac-Einstellung. Stellen Sie sicher, dass die Kontrollmittel direkt aus der Ampulle aspiriert werden.
- Wiederholen Sie die B-Lac-Einstellung mit einer anderen Kassettencharge.
- Wenden Sie sich an den Kundendienst.

<FEHLER! - Falsche/andere Charge>

Bei einer B-Lac-Einstellung* wurde eine falsche Kassettenart oder -charge eingescannt.

• Überprüfen Sie, dass alle bei der Einstellung verwendeten Kassetten B-Lac-Kassetten aus der selben Charge stammen.

^{*} B-Lac-Kassetten sind zur Zeit in Deutschland nicht erhältlich.

Nicht eingesetzt	_
FEHLER! - Kassette i Kassette neu	nicht eingelegt einlegen
	Abbrechen

Nicht eingesetzt	
FEHLER! - Kassette nicht eingelegt 2 Kassette neu einlegen	
Abbrechen	

Nicht eingesetzt		
FEHLER! - Kassette nicht eingelegt 2 Kassette entsorgen		
ок		

Optik	
FEHLER!- Defekte Kassette Kassette entfernen	
	ок

<FEHLER! - Kassette nicht eingelegt 1>

Die Kassette wurde entweder nicht richtig in die Messkammer eingelegt, oder es handelt sich um eine gebrauchte Kassette.

• Öffnen Sie die Klappe und legen Sie die Kassette neu ein.

<FEHLER! - Kassette nicht eingelegt 2>

Die Kassette wurde entweder nicht richtig in die Messkammer eingelegt, oder es handelt sich um eine gebrauchte Kassette.

• Öffnen Sie die Klappe, legen Sie die Kassette neu ein, und schließen Sie die Klappe. Klopfen Sie die Kassette zur Freisetzung von Luftblasen fest auf eine Tischoberfläche.

ODER

- Drücken Sie Abbrechen, um eine neue Kassette zu benutzen. Wischen Sie die Kassette ab, um sicherzustellen, dass sie trocken ist.
- Überprüfen Sie Pumpe und E/A-Port.

<FEHLER! - Kassette nicht eingelegt 2>

Tritt dieser Fehler wiederholt auf, werden Sie aufgefordert, die Kassette zu entsorgen.

- Drücken Sie _____, entsorgen Sie die Kassette, und wiederholen Sie den Test mit einer neuen Kassette.
- Erscheint die Meldung auch mit einer neuen Kassette, schalten Sie das Gerät aus und wieder ein, und wiederholen Sie den Vorgang.

<FEHLER! - Defekte Kassette>

Die Kassette oder Kassettenverpackung ist defekt.

- Drücken Sie
 OK , entfernen Sie die Kassette, und wiederholen Sie den Test mit einer neuen Kassette. Vor dem Einsetzen in die Messkammer wischen Sie die Kassette ab, um sicherzustellen, dass sie trocken ist.
- Erscheint die Meldung auch mit einer neuen Kassette, schalten Sie das Gerät aus und wieder ein, und wiederholen Sie den Vorgang.

Optik	_
FEHLER! - Kalibrierung ungültig Kassette entsorgen	
	ок

Kalibrierung		
FEHLER! - Verschmutzte Optik Kassette entsorgen		
ОК		

Messung	
FEHLER! - Kalibrierung abgelaufen Kassette entsorgen	
	ок

Aufnahme	_
FEHLER! - Prot Kassette ent	oe zu klein Isorgen
	ОК

<FEHLER! - Kalibrierung ungültig>

Das Gerät hat auf Grund von Problemen mit der Kassette nicht kalibriert.

- Drücken Sie or , entsorgen Sie die Kassette, und wiederholen Sie den Test mit einer neuen Kassette.
- Erscheint die Meldung auch mit einer neuen Kassette, schalten Sie das Gerät aus und wieder ein, und wiederholen Sie den Vorgang.

<FEHLER! - Verschmutzte Optik>

Aufgrund einer verschmutzten Optik oder Kassette ist der Analysator nicht in der Lage, die Probenlichtschranken zu kalibrieren.

- Entsorgen Sie die Kassette. Überprüfen und reinigen Sie das Optikglas und die Innenseite der Messkammerklappe.
- Drücken Sie und überprüfen Sie die Leuchtdioden (siehe Abschnitt 8.2.4).

<FEHLER! - Kalibrierung abgelaufen>

Diese Meldung wird angezeigt, wenn innerhalb von 10 Minuten nach der Kalibrierung keine Probe eingegeben wird oder das Probenvolumen nicht zur Messung ausreicht.

• Drücken Sie <u>w</u> und entsorgen Sie die Kassette.

FEHLER! - Instabile Sensoren> - Sind bei der Messung zwei oder mehr Sensoren instabil, kann das an einer Verstopfung oder Luftblase liegen.

- Drücken Sie or und entsorgen Sie die Kassette.
- Prüfen Sie die Probe, und wiederholen Sie die Messung mit einer neuen Kassette.

<FEHLER! - Probe zu klein> - Das System konnte nach mehrfachen Versuchen kein ausreichendes Probenvolumen aufnehmen.

• Drücken Sie ____ und entsorgen Sie die Kassette.

Barcode	_
FEHLER! - Barcode ungültig	
	ок

Barcode	_
FEHLER! - Barcode ungültig Zeit und Datum prüfen	
	ок

QC-Einstellung	_
FEHLER! - Barcode ungültig Unterschiedliche QC-Charge	
	ок

Barcode	
FEHLER! - Barcode abgelaufen Zeit und Datum prüfen	
	ОК

<FEHLER! - Barcode ungültig>

Die Barcode-Eingabe ist ungültig. Der Barcode wurde falsch gelesen oder hat ein ungültiges Format.

- Drücken Sie und wiederholen Sie die Barcode-Eingabe.
- Wenn die Fehlermeldung wieder erscheint, überprüfen Sie den Barcodescanner (s. Abschnitt 8.2.11 oder 8.3.2).
- Reinigen Sie das Fenster des Scanners mit einem in verdünntem Alkohol getränkten, faserfreien Tuch.
- Wiederholen Sie die Barcode-Eingabe.

<FEHLER! - Barcode ungültig>

Der Barcode ist ungültig. Der Barcode wurde falsch gelesen oder das Verfallsdatum des Produkts, z.B. Gasflasche, Kassette oder SRC ist überschritten.

- Drücken Sie 🔍 zum Wiederholen.
- Wenn die Fehlermeldung wieder erscheint, pr
 üfen Sie, ob die Datumsanzeige im Men
 ü

 System -> Zeit und Datum> korrekt ist.
- Prüfen Sie das Verfallsdatum.

<FEHLER! - Barcode ungültig>

Der Barcode ist ungültig.

- Überprüfen Sie, ob <Barcode A> und
- Drücken Sie ____, und fahren Sie mit dem Vorgang fort.

<FEHLER! - Barcode abgelaufen>

Das Verfallsdatum der Kassette ist überschritten.

- Drücken Sie 🔍 zum Wiederholen.
- Wenn die Fehlermeldung wieder erscheint, pr
 üfen Sie, ob die Datumsanzeige im <Zeit und Datum> Men

 ü korrekt ist.
- Prüfen Sie das Verfallsdatum.

tHb	_
ERROR - tH ung	Hb-Kalibrator jültig
	ОК

QC-Einstellung	
FEHLER! - QC-Charge ungültig	
	ок

)C	
FEHLER! - QC-Einste	llung erforderlich
	ОК

Benutzereingabe	
FEHLERL- Benutzer-I) evistiert hereits
	ок

Login	_
FEHLER! - Benutz	er-ID ungültig
	ок

Benutzereingabe	
FEHLER! - Benutzer abgelaufen	
	ок

<FEHLER! - tHb-Kalibrator ungültig>

Die Kassette in der Messkammer ist ungültig.

 Überprüfen Sie, ob es sich bei der Kassette um eine gültige tHb-Kalibratorkassette handelt, und drücken Sie
 , um mit demVorgang fortzufahren.

<FEHLER! - QC-Charge ungültig>

Die QC-Charge ist ungültig.

• Drücken Sie <u>w</u>, konfigurieren Sie das Kontrollmaterial im Einstellungsmenü, und wiederholen Sie den Vorgang.

<FEHLER! - QC-Einstellung erforderlich>

Es wurde versucht, eine QC-Messung ohne vorherige Einstellung des QC-Materials durchzuführen.

• Drücken Sie <u>w</u>, konfigurieren Sie das Kontrollmaterial im Einstellungsmenü, und wiederholen Sie den Vorgang.

<FEHLER! - Benutzer-ID existiert bereits>

Die gewählte Benutzer-ID besteht bereits in der Datenbank.

 Drücken Sie or , und geben Sie eine neue Benutzer-ID ein.

<FEHLER! - Benutzer-ID ungültig>

Die eingegebene Benutzer-ID existiert nicht in der aktuellen Datenbank.

• Drücken Sie 🔜 , und geben Sie eine gültige Benutzer-ID ein.

<FEHLER! - Benutzer abgelaufen>

Die Benutzer-ID ist abgelaufen.

• Drücken Sie <u>v</u>, und aktualisieren Sie die Benutzerinformationen.

Benutzereingabe	_	
FEHLER! - Pa stimmen nich	sswörter t überein	
	ок	

Login	
FEHLER! - Erlaubi	nis verweigert
	ок

tHb		
	Bereichsfehler	
	ОК	

Fehler	
FEHLER! - Zu wenig Datensätze in Level 2	
	ок

Benutzereingabe		
FEHLER! - Gruppenname existiert bereits		
	ок	

<FEHLER! - Passwörter stimmen nicht

überein> - Die Passworteingabe ist inkorrekt.

• Drücken Sie <u>w</u>, und geben Sie das richtige Passwort ein.

<FEHLER! - Erlaubnis verweigert>

Der Benutzer hat keine Zugriffsberechtigung auf diese Funktion.

• Drücken Sie <u>ok</u>. Zum Einstellen von Benutzerberechtigungen siehe Abschnitt 3.2.3.1.3.

<Bereichsfehler> - Dieser Fehler tritt auf, wenn die internen Korrekturen bei der Hb-Kalibrierung 10% überschreiten.

• Drücken Sie <u>w</u>, und ersetzen Sie den tHb-Kalibrator.

<FEHLER! - Zu wenig Datensätze in Level 1/2/3>

In der Datenbank sind keine ausreichenden Datensätze zur Erstellung eines Statistikprotokolls vorhanden. Zur Erstellung von Statistikprotokollen sind mindestens zwei Messungen pro Charge und Level erforderlich.

• Drücken Sie

<FEHLER! - Gruppenname existiert bereits>

Der gewählte Gruppenname besteht bereits in der Datenbank.

• Drücken Sie _____, und geben Sie einen neuen Gruppennamen ein.

8.1.3 Stoppmeldungen

Fehler

STOPP! - Optikmodulfehler. Aus-/einschalten zum Zurücksetzen

Fehler

STOPP! - Kassettenventil-Fehler Aus-/einschalten zum Zurücksetzen

Fehler

STOPP! - Dunkelstrom-Fehler Aus-/einschalten zum Zurücksetzen

Fehler

STOPP! - Luftdruckfehler Aus-/einschalten zum Zurücksetzen

B-Lac-Einstellung				
STOPP! - B-Lac-Einst	ellung erforderlich			
	ок			

Temperatur		
STOPP! - Tempera des zulässiger	tur außerhalb Bereichs	
	ок	

<STOPP! - Optikmodulfehler>

Optikmodulfehler

• Schalten Sie das Gerät aus und wieder ein, um diesen Fehler zu beheben.

<STOPP! - Kassettenventil-Fehler>

Das Drehventil kann nicht in die Ausgangsposition zurückkehren.

• Schalten Sie das Gerät aus und wieder ein, um diesen Fehler zu beheben.

<STOPP! - Dunkelstrom-Fehler>

Die Dunkelströme liegen außerhalb des zulässigen Bereichs.

• Schalten Sie das Gerät aus und wieder ein, um diesen Fehler zu beheben.

<STOPP! - Luftdruck-Fehler>

Die Barometeranzeige liegt außerhalb des Messbereichs.

• Schalten Sie das Gerät aus und wieder ein, um diesen Fehler zu beheben.

<STOPP! - B-Lac-Einstellung erforderlich>

Diese Meldung erscheint, wenn versucht wird, B-Lac-Kassetten ohne vorherige B-Lac-Einstellung zu messen.

• Führen Sie eine B-Lac-Einstellung gemäß Abschnitt 8.2.20 durch.

<STOPP! - Temperatur außerhalb des zulässigen Bereichs>

- Drücken Sie ____, und fahren Sie mit dem Vorgang fort.
- Wenn die Meldung wiederholt angezeigt wird, pr
 üfen Sie die Temperatur im <Diagnostik>-Men
 ü.

8.1.4 Nicht-Bereit-Meldungen

<Nicht bereit: Gasflasche nicht eingesetzt>

Die Gasflasche ist leer oder nicht richtig installiert. Wird eine noch gültige Gasflasche entfernt, muss diese wieder eingesetzt werden.

• Drücken Sie auf **<Neue Gasflasche>** und ersetzen die Gasflasche (s. Abschnitt 7.5.1).

Home Bereit 11:09 08-Mär Nicht bereit: Batterie leer Daten-Manager QC-Manager Manager Gas: 93% Batterie: 8.5V Luftdruck: 743.0

<Nicht bereit: Gas abgelaufen>

Das Verfallsdatum oder die Benutzungsdauer (6 Monate) der Gasflasche ist abgelaufen.

• Drücken Sie auf **<Neue Gasflasche>** und ersetzen die Gasflasche (s. Abschnitt 7.5.1).

<Nicht bereit: Batterie leer>

Die Batteriespannung ist niedrig.

• Schließen Sie den Analysator an das Netzteil an, und laden Sie die Batterie.

<Nicht bereit: Batterie kritisch>

Die Batterie ist leer und das Gerät kann keine weiteren Messungen im Batteriebetrieb durchführen.

• Installieren Sie eine voll aufgeladene Batterie oder schließen Sie den Analysator an das Netzteil zum Aufladen der Batterie (2,5 Std.) an.

<Nicht bereit: Temperatur außerhalb des Bereichs>

- Warten Sie, bis der Analysator die richtige Temperatur erreicht hat.
- Schalten Sie das Gerät aus und wieder ein, wenn der Analysator nach ein paar Minuten immer noch nicht **<Bereit>** ist.
- Kehrt der Analysator nach einem angemessenen Zeitraum nicht in die **<Bereit>**-Anzeige zurück, überprüfen Sie die Umgebungstemperatur im **<Diagnostik>**-Menü.

<Nicht bereit: Temperaturfehler>

Die Temperatur der Messkammer liegt länger als 20 Sekunden über 39 °C.

 Drücken Sie auf <Daten-Manager> oder
 <System-Manager>, um diesen Bildschirm zu verlassen, und wenden Sie sich an den Kundendienst.

<Nicht bereit: SRC-Sperre>

Ist im Einstellungsmenü die **<SRC-Sperre>** aktiviert (s. Abschnitt 3.2.1.2), erscheint diese Anzeige, wenn zu den vorbestimmten Zeiten keine SRC-Messungen durchgeführt werden.

• Drücken Sie auf **<SRC messen>** und führen Sie die erforderlichen SRC-Messungen durch (s. Abschnitt 4.5.1).

<Nicht bereit: QC-Sperre>

Ist im Einstellungsmenü die **<QC-Sperre>** aktiviert (s. Abschnitt 3.2.1.2), erscheint diese Anzeige, wenn zu den vorbestimmten Zeiten keine QC-Messungen durchgeführt werden.

 Drücken Sie auf <QC messen> und führen Sie die erforderlichen QC-Messungen durch (s. Abschnitt 4.5.2.1).

<Nicht bereit: Remote-Sperre>

Das Gerät wurde über einen entfernten Computer gesperrt und kann nicht benutzt werden.

Drücken Sie auf <Daten-Manager> oder
 <System-Manager>, um diesen Bildschirm zu verlassen.

<Nicht bereit: FSet Fehler>

Die Werkseinstellungen (FSet) sind beschädigt.

- Schalten Sie das Gerät aus und wieder ein, um diesen Fehler zu beheben.
- Wird damit keine Abhilfe geschaffen, wenden Sie sich an den Kundendienst.

<Zugriff auf Messung verboten>

Der Benutzer hat laut Sicherheitseinstellungen (s. Abschnitt 3.2.3) keine Zugriffsberechtigung auf Patientenmessungen.

 Drücken Sie auf <Daten-Manager>, <QC-Manager> oder <System-Manager>, um diesen Bildschirm zu verlassen.

8.1.5 Fatale Fehler

<Fataler Fehler: Luftdruck außerhalb des Bereichs>

Die Barometeranzeige liegt außerhalb des Messbereichs.

- Schalten Sie das Gerät aus und wieder ein, um diesen Fehler zu beheben.
- Wird damit keine Abhilfe geschaffen, wenden Sie sich an den Kundendienst.

<Fataler Fehler: Drehventil>

Das Drehventil kann nicht in die Ausgangsposition zurückkehren.

- Schalten Sie das Gerät aus und wieder ein, um diesen Fehler zu beheben.
- Wird damit keine Abhilfe geschaffen, wenden Sie sich an den Kundendienst.

<Fataler Fehler: Dunkelstrom>

Die Dunkelströme liegen außerhalb des zulässigen Bereichs.

- Schalten Sie das Gerät aus und wieder ein, um diesen Fehler zu beheben.
- Wird damit keine Abhilfe geschaffen, wenden Sie sich an den Kundendienst.

Home	_	_		
Nicht bereit	5	15:02	01-Feb)
A				
Fataler Fehler: Datenbank				
Reparieren Löschen				
Daten- Manager QC- Manager Manager				
Gas: 0% Luftdruck: 732.8				

<Fataler Fehler: Optik>

Optikfehler.

- Schalten Sie das Gerät aus und wieder ein, um diesen Fehler zu beheben.
- Wird damit keine Abhilfe geschaffen, wenden Sie sich an den Kundendienst.

<Fataler Fehler: Datenbank>

In der Datenbank ist ein Fehler aufgetreten.

- Schalten Sie das Gerät aus und wieder ein, um diesen Fehler zu beheben.
- Wird damit keine Abhilfe geschaffen, wenden Sie sich an den Kundendienst.

Home Bereit	5	13:51	11-Mär	
A	usna	hme	ei	
FP:0x00000000 SP:0x0000000 PC:0x00000000 LF:0x0000000 CPSR:0x0000000 R4:0x0000000 R5:0x0000000 R6:0x0000000 R7:0x00000000 R8:0x0000000 R7:0x00000000 R8:0x0000000 R9:0x0000000 R1:0:0x00000000				
ок				
Daten- Manager	QC Mana	ger	System- Manager	
Gas: 93% Luftdruck: 743.0				

<Ausnahme!>

Prozessorausnahme.

- Drücken Sie 🔍 zum Verlassen des Bildschirms, und wenden Sie sich an den Kundendienst.
- HINWEIS: Bitte erfassen Sie die Informationen auf dem Bildschirm, um technische Unterstützung zu erhalten.

Für technische Unterstützung wenden Sie sich bitte an Ihre zuständige OPTI Medical Vertretung.

8.2 Diagnostik

Abb. 8-1 Diagnostik

Der OPTI CCA-TS2 enthält eine Reihe hilfreicher Diagnostikprogramme.

Im Hauptmenü wählen Sie **<System-Manager>**- **<Diagnostik>** (Abb. 8-1).

Das **<Diagnostik>**-Menü enthält drei Register mit verschiedenen Diagnostikfunktionen: **<Sensoren>**, **<Hardware>** und **<Tests>**.

8.2.1 Versionen überprüfen

Abb. 8-2 Versionen

Im Hauptmenü wählen Sie **<System-Manager>** - **<Diagnostik>**.

Die erste Option im **<Sensoren>**-Menü, **<Versionen>** (Abb. 8-2), zeigt die Geräteversionen an.

 Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

8.2.2 Systemtemperaturen überprüfen

System>Diag	nostik		
Bereit	5	17:08	21-Mär
Sensoren	Hardwa	re 1	Tests
Versionen -			
Application Bootloader System			
Temperatur	anzeige		
Obere Platte	0.00 C	abung	0.0 C
Untere Platte	0.00 C	K -	
Gaslevel			
Gasdruck	Niedrig	0.00%	Neu
LEDs			
Vorn 0.000 Hinten 0.000 Ionen 0.000	10 Kass.n.ei 10 Kass.Ser 10 Klappe	nges. Isor	Nein 0.0000 Zu
Verschieder Luftdruck Batteriespannu	nes ung	0.0 m 0.0 V	mHg

Abb. 8-3 Systemtemperaturen

8.2.3 Gasdruck überprüfen

System>Dia	agnostik			
Bereit	5	17:0	8	21-Mär
Sensoren	Hard	ware	Т	ests
Versioner	ı —			
Application Bootloader System				
Temperat	uranzeige			
Obere Platte	0.00 C	Umaebi	Jna	000
Untere Platte	- 0.00 C	onigoni		0.0 0
Gaslevel	0.000			
Gasdruck	Niedr	ig 0.0	0%	Neu
LEDs				
Vorn 0.0 Hinten 0.0 Ionen 0.0	0000 Kass. 0000 Kass. 0000 Klappe	n.einges. Sensor e		Nein 0.0000 Zu
Verschiedenes				
Batteriespar	nnung		0.0 mm 0.0 V	ing

Abb. 8-4 Gasdruck

Im Hauptmenü wählen Sie **<System-Manager>**- **<Diagnostik>**.

Der Abschnitt **<Temperaturanzeige>** zeigt die verschiedenen Systemtemperaturen an: **<Obere Platte>**, **<Untere Platte>** und **<Umgebung>** (Abb. 8-3).

- HINWEIS: Wenn sich die Temperaturen der oberen und unteren Platte außerhalb des zulässigen Bereiches befinden, wird der Temperaturwert rot angezeigt.
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

Im Hauptmenü wählen Sie **<System-Manager>**- **<Diagnostik>**.

Im Abschnitt **<Gasdruck>** wird der in der Gasflasche vorhandene Gasgehalt in Prozent angegeben (Abb. 8-4).

Nach der Installation einer neuen Gasflasche sollte der Druck ca. 99 % betragen, bei einer entfernten Flasche sollte der Druck 0,00 % sein.

- Zum Installieren einer neuen Gasflasche drücken Sie auf Neu
- Lesen Sie den Barcode der Gasflasche ein, und installieren Sie die neue Gasflasche (siehe Abschnitt 7.5.1).
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

8.2.4 LEDs überprüfen

System>Diag	nostik			
Bereit	5	1	7:08	21-Mär
Sensoren	Hard	ware		Tests
 Versionen Application Bootloader System 				
Temperatur	anzeige	_		
Obere Platte	0.00 C	Umg	ebung	0.0 C
Untere Platte	0.00 C	-	-	
Gaslevel				
Gasdruck	Niedri	ig	0.00%	Neu
LEDs				
Vorn 2,000 Hinten 200 Ionen .000	0 Kass. 0 Kass. 0 Klappe	n.eing Senso	es.)r	Nein 0.0000 Zu
 Verschieder Luftdruck Batteriespann 	nas — ung		0.0 n 0.0 \	nmHg /

Abb. 8-5 LEDs

Dieses Menü wird von Servicetechnikern zur Überprüfung der LED-Funktion benutzt.

Im Hauptmenü wählen Sie **<System-Manager>**- **<Diagnostik>**.

Die folgenden Informationen werden im Abschnitt **<LEDs>** angezeigt (Abb. 8-5):

- **<Vordere>**, **<Hintere>**, **<lonen>**-Lichtschranken.
- **<Kassette nicht eingesetzt>** (befindet sich in der Klappe).
- <Kassettensensor>
- **<Klappe>** Diese Funktion zeigt an, ob die Messkammerklappe auf oder zu ist.
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

8.2.5 Luftdruck überprüfen

Abb. 8-6 Luftdruck

Dieses Menü zeigt den aktuellen Luftdruck an.

Im Hauptmenü wählen Sie **<System-Manager>**- **<Diagnostik>**.

- Die erste Anzeige im Abschnitt

 <
- Angaben zur Einstellung des Luftdrucks finden Sie in Abschnitt 3.2.4.4.1.
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

8.2.6 Batteriespannung überprüfen

System>Diag	nostik	_	_	_
Bereit	5	·)	7:08	21-Mär
Sensoren	Hard	ware	e	Tests
Versionen –				
Application Bootloader System				
- Temperatura	inzeige	_		
Obere Platte	0.00 C	Um	gebung	0.0 C
Untere Platte	0.00 C			
- Gaslevel				
Gasdruck	Niedri	g	0.00%	Neu
LEDs				
Vorn 0.000	0 Kass.r	n.ein	ges.	Nein
Hinten 0.000	0 Kass.	Sens	or	0.0000
lonen 0.000	0 Klappe	3		Zu
Verschieder	ies			
Batteriespapp			0.01	nmrig /
Dattericaparille	ang _		0.0	v
		K		

Abb. 8-7 Batteriespannung

Mit diesem Menü können Sie die Batteriespannung überprüfen.

Im Hauptmenü wählen Sie **<System-Manager>**- **<Diagnostik>**.

- Die zweite Anzeige im Abschnitt
- Wenn die Spannung unter 9,0 V liegt, muss die Batterie aufgeladen oder ersetzt werden.
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

8.2.7 Kühlungsventilator überprüfen

Abb. 8-8 Kühlungsventilator

Mit diesem Test kann die Funktion des Ventilators überprüft werden.

Im Hauptmenü wählen Sie **<System-Manager>** - **<Diagnostik>**.

- Wählen Sie das Register <Hardware>.
- Drücken Sie **<Ein>** unter der **<Ventilator>**-Anzeige zum Durchführen des Tests (Abb. 8-8).
- Wird der Ventilator eingeschaltet, sollte am Ventilator an der Rückseite des Gerätes ein Luftzug spürbar sein.
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

8.2.8 Gasventil überprüfen

Abb. 8-9 Gasventil

Mit diesem Test kann das Funktionieren des Gasventils überprüft werden.

Im Hauptmenü wählen Sie **<System-Manager>**- **<Diagnostik>**.

- Wählen Sie das Register <Hardware>.
- Drücken Sie <Auf> unter der <Gasventil>-Anzeige zur Durchführung des Tests (Abb. 8-9).
- Ein leises Zischen ist hörbar, wenn die Pumpenkassette entfernt wird und das Gasventil geöffnet ist.
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

8.2.9 Drehventil überprüfen

Abb. 8-10 Drehventil

Mit diesem Test kann das einwandfreie Funktionieren des Drehventilantriebs überprüft werden.

Im Hauptmenü wählen Sie **<System-Manager>**- **<Diagnostik>**.

- Wählen Sie das Register <Hardware>.
- Drücken Sie auf (Abb. 8-10), und geben Sie die verschiedenen Positionen ein (1 - 12). Überprüfen Sie, ob der Drehventilantrieb richtig funktioniert.
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

8.2.10 Werkseinstellungen (FSet) überprüfen

System>Dia	ignostik		
Bereit	5	17:08	21-Mär
Sensoren	Hard	ware	Tests
Ventilator		Gasvent	til
Ein	Aus	Auf	Zu
•	0	•	0
	FS	iet.	

Abb. 8-11 Werkseinstellungen

Die **<FSet>**-Funktion (Factory Settings = Werkseinstellungen) darf nur von OPTI Medical Servicepersonal benutzt werden und kann nur nach Eingabe einer besonderen Benutzer-ID- und Passwortkombination aufgerufen werden.

 Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

8.2.11 Barcodescanner überprüfen

System>Diagnostik				
Bereit	No. 17:0	8 21-Mär		
Sensoren	Hardware	Tests		
Barcode	Barcode Drucker			
Ethernet	Pumpen- Nirderung	Pumpe		
Anzeige	Touch	Gastest		
B-L Einste	.ac Kass ellung ser	etten- isor		

Abb. 8-12 Barcode-Test

Abb. 8-13 Barcode einlesen

Abb. 8-14 Barcode-Test

Mit diesem Test kann der Barcodescanner überprüft werden.

Im Hauptmenü wählen Sie **<System-Manager>**- **<Diagnostik>**.

- Wählen Sie das Register **<Tests>**.
- Drücken Sie auf **<Barcode>**, um mit dem Test zu beginnen (Abb. 8-12).
- Lesen Sie einen beliebigen Barcode ein (Abb. 8-13).
- In der Anzeige erscheint eine Zahlenreihe (Abb. 8-14). Vergleichen Sie diese mit dem Barcode-Etikett. Eine Übereinstimmung dieser Zahlen bestätigt das ordnungsgemäße Funktionieren des Barcodelesers.
- Drücken Sie auf o^K zur Rückkehr in das
 Tests>-Menü.
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

8.2.12 Drucker überprüfen

Abb. 8-15 Druckertest

Mit dieser Funktion kann der integrierte Thermodrucker überprüft werden.

Im Hauptmenü wählen Sie **<System-Manager>**- **<Diagnostik>**.

- Wählen Sie das Register **<Tests>**.
- Drücken Sie auf **<Drucker>** (Abb. 8-15).
- Der Drucker druckt dann ein Testprotokoll.
- Prüfen Sie, ob der alphanumerische Ausdruck leserlich ist und ob alle Zeichen richtig drucken.
 Wenn der Ausdruck fehlerhaft ist, muss der Drucker ersetzt werden.

Zum Auswechseln des Druckers folgen Sie den nachstehenden Anweisungen.

- Schalten Sie den OPTI CCA-TS2 aus.
- Entfernen Sie Papierrolle und Pumpenkassette.
- Lösen Sie die zwei Befestigungsschrauben des Druckers.
- Ziehen Sie den Drucker hoch und in Richtung Papierschale heraus.
- Ziehen Sie das Kabel aus der Buchse.
- Installieren Sie den neuen Drucker in umgekehrter Reihenfolge.
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

8.2.13 Optik überprüfen

System>Diagnostik					
Bereit	% 17:0		18	21-Mär	
Sensoren Hardware		ware	Tests		
Barcode	Drucker		Optik		
Ethernet	Pumpen- förderung			Pumpe	
Anzeige	Touch			Gastest	
B- Einst	Lac ellung	Kass ser	etter)-	

System>Diagnosti	ik>Optik
Bereit 😽	08:48 11-Mär
Kassettenart	
SRC	r
Patientenkassett	ie C
Falschlichtkasse	tte C
Keine Kassette	0
ОК	Abbrechen

Abb. 8-17 Kassettenart wählen

Optikte	st
	Kassette einlegen und Klappe schließen Abbrechen

Abb. 8-18 Kassette einlegen

Abb. 8-19 Kassette entfernen

Mit dieser Funktion können die 6 Optikkanäle überprüft werden. Dieser Test wird von OPTI Medical Servicepersonal durchgeführt.

Im Hauptmenü wählen Sie **<System-Manager>**- **<Diagnostik>**.

- Wählen Sie das Register **<Tests>**.
- Drücken Sie auf **<Optik>**, um mit dem Test zu beginnen (Abb. 8-16).

Wählen Sie die Kassettenart und drücken Sie auf
 OK (Abb. 8-17).

- Legen Sie die Kassette ein, und schließen Sie die Klappe (Abb. 8-18).
- Das Gerät führt dann einen Optiktest zur Überprüfung des Optikmoduls durch.
- Nach Beendigung des Tests werden die Ergebnisse ausgedruckt, und Sie werden aufgefordert, die Kassette zu entfernen (Abb. 8-19).
8.2.14 Ethernet-Schnittstelle überprüfen

Abb. 8-20 Ethernet-Test

System>Diagnostik>Ethernet		
Bereit 😽	12:45	10-Dez
Anschluss		
Stand	V	erbunden
Dauer	0 Tage	01:17:14
Geschwindigkeit		100 Mbps
IP-Adresse	192.1	68.18.135
Aktivität		
Gesendet	-	npfangen
Pakete 10421		12323

Abb. 8-21 Ethernet-Test

Mit diesem Test kann die Ethernet-Schnittstelle überprüft werden.

- Wählen Sie das Register **<Tests>**.
- Drücken Sie auf **<Ethernet>**, um mit dem Test zu beginnen (Abb. 8-20).

- Das Gerät sendet Daten und prüft, ob diese empfangen werden (Abb. 8-21).
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

8.2.15 Pumpenförderung überprüfen

System>Diagnostik		
Bereit	No. 17:0	8 21-Mär
Sensoren	Hardware	Tests
Barcode	Drucker	Optik
Ethernet	Pumpen- förderung	
Anzeige	Touch	
B-Lac Einstellung sensor		

Abb. 8-22 Pumpenförderung

Pumpenförderung	
Kassette einle Klappe sch	egen und Iließen
	Abbrechen

Abb. 8-23 Kassette einlegen

Pumpenförderung		
	Testvorgang	

Abb. 8-24 Testvorgang

Abb. 8-25 Test gültig

Abb. 8-26 Kassette entfernen

Mit dieser Funktion kann die Pumpenkassette überprüft werden.

- Wählen Sie das Register **<Tests>**.
- Drücken Sie auf **<Pumpenförderung>**, um mit dem Test zu beginnen (Abb. 8-22).

- Legen Sie eine neue Kassette ein (Abb. 8-23).
- Schließen Sie die Messkammerklappe
- Warten Sie auf die Ergebnisse (Abb. 8-24).
- Die beiden Zahlen geben die tatsächlichen Flussraten im Uhrzeigersinn und entgegen dem Uhrzeigersinn an (Abb. 8-25).
 Wenn sich eine der beiden Raten außerhalb der Grenzwerte befindet (ungültig), ist die Pumpenkassette defekt.
- Ist der Test ungültig, wiederholen Sie den Vorgang, oder ersetzen Sie die Pumpenkassette nach den Anweisungen in Kapitel 7.4.1.
- HINWEIS: Es ist möglich, dass der Test trotz einer einwandfreien Pumpenkassette beim ersten Versuch ungültig ist.
- Entfernen Sie die Kassette (Abb. 8-26).

8.2.16 Pumpenmotor überprüfen

Abb. 8-27 Pumpenmotortest

Pumpenmotortest
Pumpengeschwindigkeit: 7.5 RPM

Abb. 8-28 Pumpengeschwindigkeit

8.2.17 Anzeige überprüfen

Abb. 8-29 Anzeigetest

Mit diesem Test wird das Funktionieren des Peristaltikpumpenmotors überprüft.

Im Hauptmenü wählen Sie **<System-Manager>**- **<Diagnostik>**.

- Wählen Sie das Register <Tests>.
- Drücken Sie auf **<Pumpe>**, um mit dem Test zu beginnen (Abb. 8-27).

• Die Pumpe durchläuft automatisch alle Geschwindigkeiten (7,5 bis 120 Umdrehungen pro Minute (rpm)), die während des Normalbetriebs benutzt werden (Abb. 8-28) und kehrt dann zur **<Tests>-**Anzeige zurück.

Mit diesem Test kann das Funktionieren der Sichtanzeige überprüft werden.

- Wählen Sie das Register **<Tests>**.
- Drücken Sie auf **<Anzeige>**, um mit dem Test zu beginnen (Abb. 8-29).
- Die Anzeige sollte dann rot, grün und blau werden. Wenn das nicht der Fall ist, ist die Anzeige defekt und muss ersetzt werden.
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

8.2.18 Tastbildschirm (Touchscreen) überprüfen

System>Diagnostik			
Bereit	NG 17:08 21-Mär		
Sensoren	Hardware Tests		Tests
Barcode	Drucker		Optik
Ethernet	Pumpen- förderung Pumpe		
Anzeige	Touch		Gastest
B-Lac Einstellung sensor			

Abb. 8-30 Touch-Test

Abb. 8-31 Touch-Test

Abb. 8-32 Touch-Kalibrierung

Mit diesem Test wird das einwandfreie Funktionieren des Tastbildschirms überprüft.

- Wählen Sie das Register **<Tests>**.
- Drücken Sie auf **<Touch>**, um mit dem Test zu beginnen (Abb. 8-30).

- Bei Berühren des Bildschirms sollte ein Punkt unter der berührten Stelle erscheinen (Abb. 8-31).
- Ist das nicht der Fall, drücken Sie auf **<Kalibrieren>**.
- Es erscheint dann ein Kalibrierkreuz am oberen linken Bildschirmrand (Abb. 8-32). Halten Sie das Zentrum des Kalibrierkreuzes mit dem Finger, einem Stift oder ähnlichen Gegenstand (z. B. Spritzenadapter) gedrückt, bis dieses an anderer Stelle des Bildschirms erscheint, und wiederholen Sie diesen Vorgang an den verschiedenen Kalibrierpunkten.
- HINWEIS: Keine scharfkantigen Gegenstände verwenden, da diese den Bildschirm beschädigen können.
- Nach Abschluss der Kalibrierung drücken Sie auf Speichern.
- Zur Rückkehr in die **<System>**-Anzeige drücken Sie , zur Rückkehr ins Hauptmenü drücken Sie .

8.2.19 Gastest

Abb. 8-33 Gastest

Der **<Gastest>** (Abb. 8-33) darf nur von OPTI Medical Servicepersonal zur Überprüfung des Gassystems benutzt werden.

HINWEIS: Dieser Test dauert 2 Stunden und kann nur durch Ausschalten des Gerätes abgebrochen werden.

Gastest		
WARNUNG Zum Abbrechen Stro	9! - Gastest om aus-/einschalten	
OK Abbrechen		

Abb. 8-34 Gastest

• Drücken Sie auf Abbrechen zum Abbrechen des Tests (Abb. 8-34).

8.2.20 B-Lac-Einstellung*

Abb. 8-35 Laktateinstellung

Abb. 8-36 Benutzer-ID eingeben

System>Diagnostik>B-Lac-Einstellung			
Bereit	5	14:37	28-Dez
Zur B- bis zı B-Lac-Ein B-L Möchte	Lac Eins I 8 Level Stellung . .ac Einste n Sie wirk	tellung m 2 OPTI (n werder " " Ilung beer lich zurück	nüssen Check ndet. setzen? ein
Abb	rechen	OK	(

Abb. 8-37 B-Lac-Einstellung

Das Menü **<B-Lac-Einstellung>** wird zur Aktivierung der B-Lac-Kassetten benutzt. Dieser Vorgang dient nur zur Einstellung der Laktatkassetten und nicht zur Fehlerdiagnose.

Die B-Lac-Einstellung muss nur einmal zur Aktivierung von B-Lac-Kassetten durchgeführt werden. Danach bleibt diese Einstellung auch nach Stromausfall, Aktualisierung der Software und Löschen der Datenbank bestehen.

Ein kostenloses B-Lac Einstellungskit ist von OPTI Medical erhältlich. Bei Fragen wenden Sie sich bitte an den Kundendienst.

Im Hauptmenü wählen Sie **<System-Manager>**- **<Diagnostik>**.

- Wählen Sie das Register **<Tests>**.
- Drücken Sie auf **<B-Lac-Einstellung>**, um mit dem Vorgang zu beginnen (Abb. 8-35).
- Sie werden dann aufgefordert, Benutzer-ID und gegebenenfalls Passwort einzugeben (Abb. 8-36), wenn diese Funktionen im Einstellungsmenü aktiviert sind (s. Abschnitt 3.2.3).

HINWEIS: Benutzer-Identifikationen können in dieser Anzeige auch über den Barcodescanner eingegeben werden.

Die nebenstehende Anzeige erscheint, wenn der Laktat-Parameter bereits eingestellt wurde (Abb. 8-37).

- Drücken Sie auf Nein, um die aktuelle Einstellung beizubehalten und den Vorgang abzubrechen.
- Drücken Sie auf ____, um mit der Einstellung zu beginnen.

* B-Lac-Kassetten sind zur Zeit in Deutschland nicht erhältlich.

Abb. 8-38 OPTI Check messen

System>Diagnostik>E Bereit	3-Lac-Einstellung 14:39 28-Dez	
Kontrollmittel Level 2 messen (Neue Ampulle)		
Complet	ed: 0 of 5	
Abbrechen	ОК	

Abb. 8-39 OPTI Check messen

System>Diagnostik>B-Lac-Einstellung
Bereit 🖏 14:37 28-Dez
Zur B-Lac Einstellung müssen bis zu 8 Level 2 OPTI Check gemessen werden B-Lac-Einstellung
Vorgang beendet.
Laktat aktiviert.
ОК
ОК
ОК

Abb. 8-40 Laktat aktiviert

Zur B-Lac-Einstellung müssen bis zu 8 Ampullen OPTI Check Level 2 gemessen werden (Abb. 8-38). Stellen Sie sicher, dass Sie vor Beginn des Einstellungsvorgangs mindestens 8 Ampullen OPTI Check und 8 B-Lac-Kassetten aus der selben Charge zur Verfügung haben.

 Drücken Sie auf or , um mit der ersten Messung zu beginnen. Anweisungen zur Durchführung von Kontrollmessungen finden Sie in Abschnitt 4.5.2.1.

- Nach Beendigung jeder einzelnen OPTI Check Messung erscheint diese Anzeige (Abb. 8-39). Die Anzeige der Ergebnisse oder die Ausgabe eines Druckprotokolls erfolgt erst, wenn der gesamte Vorgang beendet ist. Fahren Sie mit den OPTI Check Messungen mit Kassetten und Kontrollmitteln aus derselben Charge fort, bis eine Meldung anzeigt, dass der Vorgang beendet ist. Bei diesem Vorgang können 5 - 8 OPTI Check Messungen erforderlich sein.
- Nach der Durchführung der erforderlichen Anzahl an Messungen ist der Laktat-Parameter aktiviert (Abb. 8-40).
- Drücken Sie auf ok, um dieses Menü zu verlassen.
- Das System druckt dann ein Protokoll zur B-Lac-Einstellung.
- Nach Beendigung des Vorgangs wird empfohlen, zur Kontrolle 2 Level OPTI Check mit B-Lac-Kassetten zu messen.

8.2.21 Kassettensensor überprüfen

System>Diagnostik		
Bereit	No. 17:0	8 21-Mär
Sensoren	Hardware	Tests
Barcode	Drucker	Optik
Ethernet	Pumpen- förderung	Pumpe
Anzeige	Touch	Gastest
B-l Einst	ac Kass ellung ser	etten-

Abb. 8-41 Kassettensensor

Kass.Sensor		
Patientenk und Kla	assette einsetzen ppe schließen	
OK Abbrechen		

Abb. 8-42 Kassette einlegen

Abb. 8-43 Kassette entfernen

Abb. 8-44 Klappe schließen

Abb. 8-45 Kalibrierung

Dieser Test wird zur Kalibrierung des Kassettensensors benutzt, wenn Probleme bei der Kassettenerkennung auftreten. Die Meldung **<Klappe öffnen>** erscheint, und die Kassettenkalibrierung wird nicht gestartet.

- Wählen Sie das Register **<Tests>**.
- Drücken Sie auf **<Kassettensensor>**, um mit dem Test zu beginnen (Abb. 8-41).
- Legen Sie eine Patientenkassette ein (Abb 8-42).
- Entfernen Sie die Kassette und lassen Sie die Messkammerklappe offen (Abb. 8-43).
- Schließen Sie die Messkammerklappe (Abb. 8-44).
- Das System führt dann eine Kalibrierung des Kassettensensors durch (Abb. 8-45).

8.3 Fehlersuche

8.3.1 Fehlerbehebungsverfahren für tHb/SO,

Tritt beim OPTI eine ungültige tHb-Kalibrierung oder QC-Messung für tHb oder SO_2 auf, wird empfohlen, die Messkammerklappe des Gerätes zu reinigen und die Messung zu wiederholen. Die beiden kleinen Optikkanäle (Abb. 8-46) sind für die tHb- und SO_2 -Messungen verantwortlich. Eine Verstopfung oder Verschmutzung dieser Kanäle kann ungültige tHb/ SO_2 -Kalibrierungen oder OPTI-Check-Kontrollmessungen verursachen.

Als Abhilfe kann die folgende einfache Reinigungsroutine benutzt werden.

1. Öffnen Sie die Messkammerklappe. Die beiden Optikkanäle befinden sich an der Klappeninnenseite (Abb. 8-46).

Abb. 8-46 Optikkanäle

2. Reinigen Sie die Optikkanäle mit einem in alkoholhaltigem Reinigungsmittel getränkten Wattestäbchen oder fusselfreien Tuch (Abb. 8-47).

Abb. 8-47 Optikkanäle reinigen

Bei Fragen oder Problemen wenden Sie sich bitte an den OPTI Medical Kundendienst.

8.3.2 Fehlerbehebungsverfahren für Barcode-Scanner

Sollten beim Einscannen von Barcodes Schwierigkeiten auftreten, reinigen Sie den Barcode-Scanner mit Alkohol und einem fusselfreien Tuch.

Bleibt das Problem weiterhin bestehen, untersuchen Sie das Scanner-Fenster auf Kratzer.

Zur Bestellung eines Ersatzfensters wenden Sie sich bitte an den Kundendienst.

9 FL	JNKTIONSGRUNDLAGEN	9-1
9.1	Anwendungsbereich	9-1
9.2	Messgrundlagen	9-1
9.3	Arbeitsweise	9-2
9.4	Probenentnahme und Handhabung	9-3
9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6 9.4.7 9.4.8 9.5	Sicherheitsvorkehrungen Probenanforderungen Gerinnungshemmer und Probenentnahmegefäße Spritzen Kapillarröhrchen OPTI Medical ComfortSampler* Probenröhrchen Handhabung und Lagerung der Proben Verfahren	9-3 9-3 9-3 9-3 9-3 9-3 9-3 9-4 9-4 9-4 9-4 9-4
9.5.1 9.5.2 9.5.3 9.5.4 9.5.5 9.5.6 9.5.7 9.5.8 9.5.9 9.5.10 9.5.11	Erforderliche Materialien	9-5 9-6 9-6 9-9 9-9 9-9 9-10 9-10 9-11 9-11 9-12 9-13 9-14

9 FUNKTIONSGRUNDLAGEN

9.1 Anwendungsbereich

Der OPTI* CCA-TS2 Analysator ist für die folgenden Messungen im klinischen Laborumfeld und in der Notfallmedizin konzipiert: pH, pCO₂, pO₂, Natrium, Kalium, Calcium, Chlorid, Glucose, Harnstoff-Stickstoff, Laktat, Gesamthämoglobinkonzentration und Hämoglobinsauerstoffsättigung in Vollblutproben und pH, Natrium, Kalium, Calcium, Chlorid, Glucose, Harnstoff-Stickstoff in Serum- und Plasmaproben. Aufgrund seiner einfachen Handhabung kann der Analysator ohne aufwendige Schulung des Bedienpersonals betrieben werden.

9.2 Messgrundlagen

Lumineszenz ist die Lichtenergie, die ausgestrahlt wird, wenn angeregte Moleküle in den Ruhezustand zurückkehren. Lumineszenz, die durch Lichtenergie angeregt wird, wird im allgemeinen als Fluoreszenz bezeichnet. Wenn eine fluoreszierende Chemikalie einer Lichtenergie einer entsprechenden Farbe ausgesetzt ist, werden die Elektronen in den Molekülen der fluoreszierenden Chemikalie angeregt. Wenn die Elektronen in den Ruhezustand zurückkehren, strahlen sie eine kleine Menge Lichtenergie aus. Die ausgestrahlte Energie ist kleiner als die Anregungsenergie und hat deshalb eine andere Farbe. Das bedeutet, dass das ausgestrahlte Licht (Fluoreszenzemission) rotverschoben vom Anregungslicht, und daher weniger intensiv ist.¹

Fluoreszierende Optoden (**opt**ische Elektr**oden**) messen im Wesentlichen die Lichtenergie, die von fluoreszierenden Farbstoffen emittiert wird. Das emittierte Licht wird vom Anregungslicht durch optische Filter unterschieden. Da die Energie des Anregungslichts konstant bleibt, wird die Menge des resultierenden Emissionslichtes nur von der Konzentration des zu analysierenden Parameters beeinflusst. Die Konzentration des Parameters wird durch die Berechnung der Differenz der an einem bekannten Kalibrierpunkt gemessenen Fluoreszenz und der mit einer unbekannten Konzentration des Parameters gemessenen Fluoreszenz erstellt. Eine Beschreibung der Messgrundlagen der einzelnen Parameter finden Sie im Abschnitt Messparameter der Gebrauchsanweisung.

¹ Guilbault GG, Ed., Practical Fluorescence, 2nd Ed., Marcel Dekker, 1990.

9.3 Arbeitsweise

Der OPTI CCA-TS2 Analysator ist ein mikroprozessor-gesteuertes Gerät zur Messung von optischer Fluoreszenz. Eine Einwegkassette enthält alle zur Kalibrierung, Probenmessung und Probenentsorgung notwendigen Elemente. Mit Hilfe des Barcodescanners werden die kassettenspezifischen Kalibrierinformationen von der Kassettenverpackung in das Gerät eingelesen. Danach wird die Kassette in die Messkammer eingeführt. Der Analysator wärmt die Kassette auf $37,0 \pm 0,1$ °C auf, und führt dann einen Kalibriertest der pCO₂- und pO₂-Sensoren durch, indem eine Gasmischung über die Optodensensoren geleitet wird. Die pH- und Ionenkanäle werden mit einer Präzisions-pH-Pufferlösung in der Kassette kalibriert. Die tHb- und SO_2 -Kanäle werden bei der Herstellung kalibriert. Wenn die Kalibrierung bestätigt wird, saugt der Analysator die Blutprobe in die Kassette und über die Optodensensoren und misst die Fluoreszenzemission der Optoden, nachdem diese mit der Blutprobe äquilibriert sind. Nach einer Einzelmessung wird die Kassette mit der sicher verschlossenen Blutprobe aus dem Analysator entfernt und entsorgt. Reagenzien, Blut oder Abwasser gelangen nie in das Innere des Analysators.

Während der Messung wird Licht, das von den Leuchtdioden im Analysator erzeugt wird, durch optische Filter geleitet, so dass bestimmte Wellenlängen an die Sensoren übertragen werden, wodurch diese fluoreszieren. Die Intensität des Emissionslichtes ist vom Sauerstoff-Partialdruck (pO₂), Kohlendioxyd-Partialdruck (pCO₂), der Wasserstoffionenkonzentration (pH), der Elektrolytkonzentration (Na⁺, K⁺, Ca⁺⁺, Cl⁻) oder der Metabolitkonzentration (Glu, BUN/Urea, Lac) des Blutes im direkten Kontakt mit den Sensoren abhängig. Bestimmte Farben werden vom Emissionslicht durch einen optischen Filter und eine Linse zur Messung durch einen Lichtdetektor isoliert.

Für tHb und SO_2 wird Rot- und Infrarotlicht von drei Laserdioden über dichroitische Strahlungsteiler und optische Wellenleiter durch ein optisch geschliffenes Fenster zum Blut in der Kassette über dem O_2 -Sensor geleitet. Dieses Licht wird teilweise absorbiert und von den Erythrozyten und dem Sensorüberzug ins Gerät reflektiert, indem es über einen optischen Wellenleiter zu einer Photodiode geführt wird. Die Intensität des reflektierten Lichts unterscheidet sich auf allen Wellenängen deutlich für tHb und SO_2 und wird zu deren Messung benutzt.

Das optische Signal der Detektoren wird vom Mikroprozessor in eine numerische Anzeige in konventionellen Maßeinheiten umgewandelt und auf der Vorderseite des Gerätes angezeigt. Andere klinische Parameter, die generell zur Einschätzung des Sauerstoff- und Säure-Basen-Status verwendet werden, werden auf der Grundlage dieser Messwerte berechnet.

9.4 Probenentnahme und Handhabung

9.4.1 Sicherheitsvorkehrungen

Bei der Entnahme von Blutproben müssen die allgemein gültigen Sicherheitsvorkehrungen befolgt werden. Bei der Handhabung von Blutproben besteht immer die Gefahr der Übertragung von HIV, Hepatitis-B oder C-Viren oder anderer durch Blut übertragbarer Pathogene. Geeignete Blutentnahmetechniken müssen angewandt werden, um das Risiko für das Bedienpersonal zu minimieren. Schutzhandschuhe und geeignete Schutzkleidung müssen getragen werden. Richtlinien und weitere Informationen zur Handhabung von Blutproben sind z.B. im CLSI Dokument M29-A3, *Protection of Laboratory Workers from Occupationally Acquired Infections; Approved Guideline – Third Edition;* März 2005; zu finden.

9.4.2 Probenanforderungen

Die Blutentnahme zur Analyse muss von qualifiziertem Personal durchgeführt und entsprechend protokolliert werden. Siehe auch CLSI Dokument H11-A4, *Procedures for the Collection of Arterial Blood Specimens; Approved Standard - Fourth Edition*; September 2004, für ausführliche Informationen zur Probenentnahme, Lagerung, Handhabung und Dokumentation.

9.4.3 Gerinnungshemmer und Probenentnahmegefäße

Zur Gerinnungshemmung bei der Blutgas- und Elektrolytanalyse sollte ausschließlich Lithiumheparin verwendet werden. Für die Blutgasanalyse können Lithiumheparin, Natriumheparin oder andere Heparinsalze verwendet werden. Andere Gerinnungshemmer wie EDTA, Citrat, Oxalat und Fluorid haben einen signifikanten Einfluss auf den Blut-pH-Wert und die Elektrolytwerte und sollten daher nicht verwendet werden. Lithiumheparin sollte zur Messung von Lithium nicht verwendet werden.

9.4.4 Spritzen

Bei der Verwendung von Flüssigheparin zur Gerinnungshemmung sollten die Entnahmegefäße nicht größer als die erforderliche Blutmenge sein, um eine Verdünnung des Blutes durch die gerinnungshemmende Lösung zu minimieren. Obwohl die Anwendung von Kunststoffspritzen zur Entnahme von Blutproben für die Blutgasanalyse weit verbreitet ist, gibt es Hinweise in der Literatur bezüglich der Verwendung von Kunststoffspritzen bei pO₂-Werten über dem Normalwert. Bei Kühlung der Probe mit Eiswasser ist besonders auf die CO₂- und Sauerstofflöslichkeit in bestimmten Kunststoffen zu achten. Bei Blutproben, bei denen sehr hohe pO₂-Werte erwartet werden, sollte die Analyse so schnell wie möglich nach der Entnahme erfolgen, um eine Kühlung zu vermeiden. Vollblutproben sollten vor der Analyse gründlich gemischt werden, da die Sedimentation der Blutzellen die Messung des Gesamthämoglobins beeinflusst.

9.4.5 Kapillarröhrchen

Bei der Entnahme von Kapillarblutproben sollten Kapillarröhrchen mit einem Mindestfüllvolumen von 125 μ l verwendet werden. Die Kapillarröhrchen von OPTI Medical Systems (MC0024) mit einem Mindestfüllvolumen von 200 μ l sind dazu ideal geeignet. Die OPTI Medical Kapillarröhrchen für pH-, Blutgas- und Elektrolyte eignen sich nicht für die Lithiumanalyse. Die OPTI Kapillarröhrchen MC0024 sind nur für die Anwendung in OPTI CCA Analysatoren (GD7046, GD7013 und GD7045) freigegeben und sollten nicht in Blutgasgeräten anderer Hersteller verwendet werden.

Vor der Entnahme sollte die Punktionsstelle erwärmt oder anderweitig zur Anregung der arteriellen Blutzirkulation stimuliert werden. Die Punktion sollte tief genug sein, um einen ungehinderten und schnellen Blutfluss zu gewährleisten.

Kapillarröhrchen mit Tonverschlusskappen sollten nicht benutzt werden, da die scharfen Kanten den Einfüllmund der OPTI Kassette beschädigen könnten. Es sollten nur Kapillarröhrchen mit feuerpolierten Spitzen verwendet werden, um eine Beschädigung der Kassette zu vermeiden.

Bei Verwendung eines Stahlstifts, wie er bei bestimmten Kapillarröhrchen benutzt wird, muss dieser vor der Probeneingabe in das Gerät entfernt werden, um eine Beschädigung der Kassette zu vermeiden. Kapillarproben können bei Raumtemperatur durch die rasche Kühlung bei der Entnahme bis zu 30 Minuten gelagert werden.

In gekühlten Proben bleiben die Glucosewerte bis zu 30 Minuten konstant, in ungekühlten Proben bis zu 10 Minuten. Serum muss innerhalb dieser Zeitspannen abgeschieden werden.

9.4.6 OPTI Medical ComfortSampler*

Zur Blutentnahme für den OPTI CCA-TS2 kann der OPTI Medical ComfortSampler verwendet werden.

Nach der Entnahme sollte der ComfortSampler, wie auch andere Kapillarröhrchen, mit der Verschlusskappe verschlossen und innerhalb von 30 Minuten in horizontaler Lage zur Analyse im Gerät gebracht werden.

In gekühlten Proben bleiben die Glucosewerte bis zu 30 Minuten konstant, in ungekühlten Proben bis zu 10 Minuten. Serum muss innerhalb dieser Zeitspannen abgeschieden werden.

9.4.7 Probenröhrchen

Bei der Probenentnahme mit Probenröhrchen wird die Probe mit Hilfe einer Saugöhre (BP7183) aufgenommen.

- HINWEIS: Vollblutproben sollten so schnell wie möglich innerhalb von 5 Minuten nach der Blutentnahme analysiert werden. Für eine kurze Lagerung bis zu 1 Stunde sollten die Proben im Eis gekühlt werden.
- *HINWEIS:* Bei der Anwendung der Saugröhre bei Vollblutproben werden Elektrolyt- und pH-Werte angegeben, aber keine von pCO, abgeleiteten Werte erstellt.

9.4.8 Handhabung und Lagerung der Proben

Ausführliche Informationen und Richtlinien zur Probenentnahme, Gerätekalibrierung und Qualitätskontrolle bei der pH- und Blutgasanalyse, mit Angabe möglicher Fehlerquellen, die ungenaue Ergebnisse hervorrufen können, sind im CLSI Dokument H18-A3, *Procedures for the Handling and Processing of Blood Specimens*; Approved Guideline - Third Edition, November 2004, enthalten.

Vollblutproben sollten mit heparinisierten Spritzen, ComfortSampler oder Kapillaren entnommen und so schnell wie möglich nach der Entnahme analysiert werden. Luftblasen sind sofort nach der Entnahme aus dem Probenentnahmegefäß zu entfernen. Es ist extreme Vorsicht geboten, um Nadelstichverletzungen zu vermeiden. Wird die Probe in einer Spritze oder einem Vakuumröhrchen entnommen, muss die Probe durch mehrmaliges Umdrehen oder Rollen der Spritze zwischen den Händen gründlich mit Gerinnungshemmer gemischt werden. Dann ist die Probe nach den geltenden Bestimmungen entsprechend zu etikettieren. Die Spritze mit der Probe muss auf Eis gelagert werden, da auf Grund des Zellstoffwechsels bei Raumtemperatur nach 5 Minuten eine Veränderung der Blutgas- und pH-Werte der Probe eintritt. Änderungen des pO_2 -Werts auf Grund von Sauerstoffverbrauch können durch mehrere Faktoren beeinflusst werden, u. a. die Anzahl der weißen Blutkörperchen und Retikulozyten, die Lagerungstemperatur und den ursprünglichen pO_2 -Wert. Bei Lagerungstemperaturen zwischen 1 und 5 °C bleiben die Ergebnisse der Blutprobe bis zu 2 Stunden gültig. Proben, bei denen eine hohe Anzahl weißer Blutkörperchen, Retikulozyten oder hohe pO_2 -Werte vermutet werden, sollten so bald wie möglich nach der Entnahme analysiert werden

In Spritzen mit pathologischen Blutproben kann sehr schnell eine Aggregation und Sedimentation der Erythrozyten eintreten, die die *c*tHb-Messung beeinträchtigen kann. Zur Vermeidung derartiger Fehler sollte nach Entfernen eventueller Luftblasen die Probe durch Rollen der Spritze (mindestens 60 Sekunden) gründlich gemischt werden. Daran anschließend sollte sofort die Messung im Analysator erfolgen.

Die Aufnahme der Probenflüssigkeit in den OPTI CCA-TS2 ist für Spritzen-, ComfortSampler- und Kapillarproben identisch. Aufnahmezeit, -Volumen und Geschwindigkeit bleiben unverändert. Es treten daher keine methodenabhängigen systematischen Fehler oder Ungenauigkeiten auf. Bei Spritzenproben muss jedoch ein ausreichendes Probenvolumen vorhanden sein (0,25 ml in einer 1 ml Spritze), um zu vermeiden, dass der Spritzenkolben den Spritzenadapter berührt.

Fehler in der Blutanalyse können trotz korrekter Entnahme durch unzureichendes Mischen der Probe nach der Entnahme und vor der Messung, durch Kontaminierung durch Raumluft, wenn Luftblasen nach der Entnahme nicht rechtzeitig entfernt wurden, oder durch Stoffwechselveränderungen in der Probe auftreten.

Für Serumproben sollte das Blut in einem nichtpräparierten Probengefäß entnommen werden. Die Probe sollte 30 Minuten gelagert und nach Eintreten der Spontangerinnung zentrifugiert werden. Dabei wird das Serum vom Blutkuchen getrennt und in ein geeignetes Probengefäß überführt und versiegelt. Sollte eine Lagerung der Probe erforderlich sein, kann der Probenbehälter verschlossen bei einer Temperatur von 4 bis 8 °C bis zu 48 Stunden im Kühlschrank gelagert werden. Gekühlte Proben sollten vor der Analyse auf Raumtemperatur (15 - 30 °C) erwärmt werden.

Die Zulässigkeit der verwendeten Probenbehälter sollte von den einzelnen Labors festgelegt werden.

Produkte variieren von Hersteller zu Hersteller und manchmal von Charge zu Charge.

HINWEIS: Serum eignet sich nicht als Probenmaterial für die Glucoseanalyse, da die Retentionszeit der Erythrozyten in der Probe zu lang ist. Die eintretende Glykolyse kann zu verminderten Glucosewerten in Serumproben führen

9.5 Verfahren

9.5.1 Erforderliche Materialien

and a lateral lateration

Beschreibung	Artikeinr.
Sensorkassetten in verschiedenen Parameterkonfigurationen	siehe Zubehör Kapitel 10
Multi-Level Standardreferenzkassette	BP7652
tHb-Kalibrierkassette	BP7653
Kalibriergasflasche	BP7162
Druckerpapier	HP0070

Die Probe wird automatisch im OPTI CCA-TS2 gemessen, und die Ergebnisse werden angzeigt und gedruckt. Informationen zum Betrieb des Analysators finden Sie in Kapitel 5 dieser Gebrauchsanweisung.

9.5.2 Testbedingungen

Mindestprobenvolumen:	125 µl (60µL für B60-Kassette)
Probenart:	heparinisiertes Vollblut, Serum oder Plasma
Probenentnahme:	Spritze, Kapillare, ComfortSampler oder Probenröhrchen
	mit Saugröhre (nur E-Lyte CCA Kassetten)
Umgebungstemperatur:	10 - 30 °C
Relative Luftfeuchtigkeit:	5% bis 95% (nicht kondensierend)
Messverfahren:	optische Fluoreszenz (pH, pO ₂ , pCO ₂ , Na ⁺ , K ⁺ , Ca ⁺⁺ , Cl ⁻ , Glu, BUN/Urea, Lac) und Reflexion (tHb, SO ₂)

9.5.3 Eingabewerte

Parameter	Bereiche/Optionen	Vorgabe
Patienten ID	25 alphanumerische Zeichen	leer
Auftragsnummer	25 numerische Zeichen	leer
Geburtsdatum	Monat, TT, JJJJ	leer
Patientengeschlecht	Männlich, weiblich oder unbekannt	unbekannt
Patiententemperatur, T	14,0 bis 44,0 °C	37,0 °C
Krankenaktennummer	25 numerische Zeichen	leer
Kontonummer	25 numerische Zeichen	leer
Test-ID	25 alphanumerische Zeichen	leer
Patientenname Vorname Nachname	25 alphabetische Zeichen 25 alphabetische Zeichen	leer leer
Alter	1-150	0
Behandelnder Arzt	25 alphabetische Zeichen	leer
Patienten-Standort	25 alphabetische Zeichen	leer
Probenentnahmezeit	Monat, TT, JJ, HH:MM	leer

Parameter	Bereiche/Optionen	Vorgabe
Probenart	Art, Ven, MixVen, Cap, Cord, CPB, wobei: Art = arteriell Ven = venös MixVen = gemischt venös Cap = kapillar Cord = Schnur CPB = cardiopulmonaler Bypass	Art
Punktionsstelle	LR/RR/LB/RB/LF/RF/ Schnur/Skalp, wobei: LR = Links Radial RR = Rechts Radial LB = Links Brachial RB = Rechts Brachial LF = Links Femoral RF = Rechts Femoral Schnur = Nabelschnur Skalp = Skalp	LR
Allen-Test	Unbekannt, positiv oder negativ	Unbekannt
Hämoglobinart	erwachsen oder fetal	erwachsen
Bypass	Pumpe-Aus / Pumpe-Ein	Pumpe-Aus
O2 Mode	Luft, Maske, T-P, NC, Vent, Beut., Haube oder And., wobei: Luft = Raumluft Maske = Maske T-P = T- Stück NC = Nasenkanüle Vent = Beatmungsgerät Beutel = Beutel (manuelle Wiederbelebung Haube = Haube And. = Andere	Luft ;)
Ventilationsmodus	Nein, SIMV, PSV, PCV, CMV/AC, CPAP, PCIVR oder BIPAP, wobei:	Nein
	Nein = keine Einstellung SIMV = synchronisierte intermittierende mandatorische Ventilation	
	PSV = druckunterstützte Beatmung PCV = druckkontrollierte Beatmung	

Parameter	Bereiche/Optionen	Vorgabe
	CMV/AC = kontrollierte mechanische Beatmung / assistierte Spontanbeatmur	ng
	CPAP = kontinuierliche Beatmung gegen erhöhten Druck	
	PCIVR = PCIVR-Beatmung	
	BIPAP = BIPAP-Beatmung	
Plateaudruck (Pplat)	0,0 bis 100,0	0,0
Atemminutenvolumen (VI	E) 0 bis 120	0
Spitzendruck (PIP)	0 bis 140	0
Flussrate (Liter) (FR)	0,00 bis 300,00	0,00
Atemzugvolumen (VT)	0 bis 4000	0
Druckunterstützung (PS)	0,0 bis 99,9	0,0
Positive endexspiratorisch Druckbeatmung (PEEP)	e 0 bis 50	0
Frequenz (f)	0 bis 155 bpm	0
Kontinuierliche Beatmung gegen erhöhten Druck (CF	g 0 bis 50 PAP)	0
Gesamthämoglobin, tHb	1,0 bis 26,0 g/dL 0,62 bis 16,14 mmol/L 1 bis 260 g/L	15,0 g/dL 9,31 mmol/L 150 g/L
FIO ₂	0,21 bis 1,0	0,21
Mittlere korpuskuläre Hämoglobinkonzentration MCHC%	29,0 bis 37,0 %	33,3 %
Respirationsquotient, RQ	0,70 bis 2,00	0,84
P ₅₀	15,0 bis 40,0 mmHg 2,0 bis 5,33 kPa	26,7 mmHg 3,56 kPa
BiLevel IPAP	0,2 - 9,9	1,0
BiLevel EPAP	0,2 - 9,9	1,0
I/E Ratio - Inspirationszeit	t 0,2 - 9,9	1,0
I/E Ratio - Exspirationszei	it 0,2 - 9,9	1,0
Bemerkungen	50 Zeichen	leer

9.5.4 Rechenwerte

Parameter	Bereich	Anzeige- Auflösung	Einheiten
aktuelles Bikarbonat, HCO ₃	1 bis 200	0,1	mmol/L
Basenüberschuss, BE	-40 bis +40	0,1	mmol/L
Basenüberschuss ecf, BE _{ecf}	-40 bis +40	0,1	mmol/L
Aktueller Basenüberschuss, BE _{act}	-40 bis +40	0,1	mmol/L
Pufferbasen, BB	0 bis 100	0,1	mmol/L
Gesamt-CO ₂ , tCO ₂	1 bis 200	0,1	mmol/L
Standardbikarbonat, st.HCO ₃ -	1 bis 200	0,1	mmol/L
Standard-pH, st.pH	6,5 bis 8,0	0,001	pH units
Sauerstoffsättigung, SO, (c)	0 bis 100	0,1	%
Sauerstoffgehalt, O ₂ ct	0 bis 56	0,1	mL/dL
Hämatokrit, Hct(c) ²	15 bis 75	1	%
Wasserstoffionenkonzentration, cH ⁺	10 bis 1000	0,1	nmol/L
Alveolar-arterielle Sauerstoffpartialdruck	- 0 bis 800	0,1	mmHg
differenz, AaDO ₂			
Anionenlücke, AG	3 bis 30	1	mmol/L
P ₅₀	15 bis 35	0,1	mmHg
nČa++	0,1 bis 3,0	0,1	mmol/L

9.5.5 Kalibrierung

Alle OPTI Kassettenchargen werden während des Herstellungsprozesses kalibriert. Dieser Vorgang wird mit Standardlösungen höchster Präzision durchgeführt, die den gesamten Messbereich für pH und Ionen abdecken. Für die Bestimmung der Kalibrierparameter für O₂, CO₂, tHb und SO₂ werden Kalibrierstandardlösungen verwendet, die auf die klinisch kritischen Bereiche abgestimmt sind. Die Kassettenpackungen werden dann mit einem Barcode-Etikett versehen, das sowohl diese Kalibrierinformationen als auch die Chargennummer und das Verfallsdatum enthält.

Vor der Durchführung einer Probenanalyse wird der Barcode der Kassette in den Analysator eingelesen, indem die Kassettenpackung vor den Barcodescanner gehalten wird. Die Kassette wird dann installiert und eine Kalibrierprüfung mit Hilfe einer Präzisionsgasmischung und der internen Pufferlösung durchgeführt. Zusätzlich wird eine optische Nullpunktkalibrierung aller optischen Kanäle durchgeführt.

Während des Kalibrier- und Messvorgangs werden automatisch diagnostische Tests durchgeführt, um ein einwandfreies Funktionieren des Gerätes und eine einwandfreie Messung der Kassette sicherzustellen. Diese Tests überprüfen die Kassette automatisch auf eventuelle Beschädigung der Verpackung, führen eine Temperatur- und Strömungskontrolle während der Kalibrierung durch, prüfen das Ausgleichverhalten des Sensors während der Kalibrierung und Messung und beinhalten eine automatische Luftblasenerkennung. Sie stellen unzureichende Probenvolumen während der Probenaufnahme fest, erkennen automatisch eine ungenügende Gasversorgung, einen niedrigen Batteriestand, eine verschmutzte Optik, verschmutzte Strömungselemente oder Pumpenteileverschleiss.

9.5.6 Qualitätskontrolle

Beim erstmaligen Gebrauch einer neuer Kassettencharge und danach in monatlichen Abständen sollte eine Validierung der Charge durch Analyse von OPTI CHECK oder OPTI CHECK PLUS Blutgas-Kontrollmitteln durchgeführt werden. Diese Materialien sollten Zielwerte für alle Messwerte liefern, die innerhalb der für das jeweilige Labor üblichen Messbereiche liegen.

Es wird empfohlen, die Qualitätskontrollmittel direkt aus der Ampulle in das Gerät einzusaugen. Damit wird die Sensitivität gegenüber präanalytischen und anderen mit dem Gebrauch von wässrigen Kontrollmitteln assozierten Fehlern (siehe Abschnitt Einschränkungen) minimiert.

Zur Kontrolle der Messung und Funktion des Analysators sollten die Multilevel Standardreferenzkassetten (SRC) gemessen werden. Diese Kassetten können 3 Level messen, und OPTI Medical empfiehlt die Durchführung einer SRC-Messung für Level 1 und 3 (hohe und niedrige Werte) einmal täglich, wenn der Analysator in Betrieb ist. Diese Spezialtestkassetten enthalten einen optischen Sensorsimulator, der vom Gerät wie jede andere Kassette gemessen wird, und mit einem gültigen Messergebnis bestätigt, dass die Parameter innerhalb der zulässigen Bereiche liegen. Die SRC-Grenzwerte der einzelnen Parameter sind im Abschnitt "Messparameter" dieser Gebrauchsanweisung angegeben.

Alle in dieser Übersicht beschriebenen Leistungsspezifikationen wurden auf der Basis der obengenannten Mindestempfehlungen zur Qualitätskontrolle erstellt.

Die Standardreferenzkassetten (SRC) stellen eine Ergänzung zu herkömmlichen Qualitätskontrollverfahren dar. In herkömmlichen Blutgasgeräten werden mehrmals täglich flüssige Qualitätskontrollmittel zur Kontrolle des Messvorgangs und der Reagenzien gemessen. In diesen Geräten werden mehrere Patientenmessungen mit ein und demselben Reagenziensystem durchgeführt. Der OPTI CCA-TS2 benutzt eine Einweg-Kassette, die alle zu einer Patientenmessung notwendigen Reagenzien enthält. Jede Kassette stellt ein separates Reagenzien- und Sensorensystem dar.

Bei den herkömmlichen Verfahren, bei denen mehrmals täglich Flüssigkontrollmittel gemessen werden, werden die einzelnen Reagenzien und Sensoren nicht überprüft. Es wurden daher von einigen Herstellern ergänzende Methoden zur Überprüfung aller Systemelemente entwickelt. OPTI Medical verwendet ein duales Verfahren. Zunächst überprüft die SRC, ein elektronischer optischer Simulator, die Elektronik, Optik, Thermostate usw. des Systems. Dann wird nach Einlegen der Probenkassette vor der Messung eine umfassende Qualitätskontrolle durchgeführt, bei der sichergestellt wird, dass sich das in der Kassette befindliche Reagenziensystem innerhalb der vorgeschriebenen Grenzwerte befindet. Ist das nicht der Fall, erscheint eine Fehlermeldung und die Kassette wird entsorgt. Weiterhin wird automatisch die Unversehrtheit der Kassettenverpackung, die Temperatur, Strömungselemente und das Vorhandensein von Luftblasen überprüft. Dieses Verfahren bietet eine Qualitätskontrolle im Sinne der herkömmlichen Flüssigkontrollmittel ohne zusätzliche Kosten für das Labor.

Für Labors, die Qualitätskontrollen mit flüssigen Kontrollmaterialien durchführen, bietet OPTI Medical speziell formulierte wässrige Kontrollmittel, OPTI CHECK und OPTI CHECK PLUS an, die alle im OPTI CCA-TS2 gemessenen Parameter enthalten. Sie enthalten eine stabile Suspension von Polystyrol-Kügelchen, die ähnlich der Erythrozyten, Rot- und Infrarotlicht reflektieren und teilweise absorbieren, womit eine realistische Messung von tHb und SO_2 ermöglicht wird. Die drei Kontroll-Level enthalten unterschiedliche Kugel-Konzentrationen zur Simulation niedriger, mittlerer und hoher Hämoglobingehalte.

9.5.7 Referenzbereiche²

Referenzbereiche beschreiben typische Ergebnisse in einer bestimmten Gruppe gesunder Menschen. Sie sollten jedoch aufgrund von Unterschieden zwischen Methoden, Labors, Standorten und anderen Faktoren nicht als absolute Indikatoren für Gesundheit oder Krankheit angesehen werden. Die hier aufgeführten Referenzbereiche werden nur zur allgemeinen Information angegeben. Richtlinien zur Bestimmung von Referenzbereichen sind in der CLSI Richtlinie C28-A2 (How to Define and Determine Reference Intervals in the Clinical Laboratory; Approved Guideline – Second Edition.) angegeben. Referenzbereiche sollten jeweils von den einzelnen Labors erstellt werden.

Die im Analysator vorprogrammierten Referenzbereiche basieren auf den bei "Tietz, Burtis C, et al (Eds.), Textbook of Clinical Chemistry and Molecular Diagnostics, 4th Ed., (Elsevier Saunders, 2006) pps. 2252-2302" angegebenen Referenzbereichen.

Die vorgegebenen Bereiche und Verfahren zur Änderung dieser Bereiche finden Sie in Kapitel 3.2.2.5 der Gebrauchsanweisung.

9.5.8 Spezifische Leistungsmerkmale

Alle in diesem Abschnitt genannten Leistungsdaten wurden unter Anwendung von OPTI CCA-TS2 Systemen erstellt, wobei täglich SRC-Messungen zur Qualitätskontrolle durchgeführt wurden. Flüssige Qualitätskontrollmittel wurden jeweils zu Beginn einer neuen Kassettencharge gemessen.

² Tietz; Burtis C, et al (Eds.), Textbook of Clinical Chemistry and Molecular Diagnostics, 4th Ed., (Elsevier Saunders, 2006) pps. 2252-2302.

9.5.9 Einschränkungen

Das OPTI CCA-TS2 System ist zur Messung von Vollblut, Serum oder Plasma konzipiert und sollte täglich mit Standardreferenzkassetten und zu Beginn einer neuen Kassettencharge mit wässrigen Kontrollmitteln überprüft werden. Wässrige Kontrollmittel sind einfach im OPTI CCA-TS2 System zu handhaben, sind jedoch für ihre geringe Sauerstoff-Transportfähigkeit und Temperaturanfälligkeit bekannt. Messungen derartiger Materialien haben eine größere Sensitivität gegenüber präanalytischen und gerätespezifischen Fehlern als vergleichbare Vollblutmessungen. Das OPTI CCA-TS2 System bildet hierbei keine Ausnahme und weist eine geringfügig niedrigere pO_2 -Präzision bei wässrigen Kontrollmitteln als bei Vollblut auf, was auf den hohen Anteil an Kunststoffmaterial, der das Messsystem umschließt, zurückzuführen ist.

Die tHb-Messung mit dem OPTI CCA-TS2 zeigt ein gewisse Sensitivität gegenüber der pathologisch raschen Sedimentation der Erythrozyten, die oft durch die übermäßige Geldrollen- oder Rouleau-Bildung hervorgerufen wird³. Dies zeigt sich in der raschen Sedimentation und Klärung, bei der sich Erythrozyt-Aggregate im unteren Teil der Spritze wenige Minuten nach dem Mischen absetzen. Der OPTI CCA-TS2 bricht den Großteil der Geldrollen und anderen Aggregate durch ein rasches Einsaugen der Vollblutbrobe mit hoher Scherrate auf. In einigen seltenen pathologischen Fällen bleiben die Rollenaggregate jedoch bestehen oder bilden sich während des Einsaugens neu und versursachen eine positive tHb-Abweichung von bis zu 3g/dL, normalerweise in einem Bereich von 7 - 12 g/dL. Messungen außerhalb des Messbereiches werden auf der Anzeige als "NIED" bei Werten unterhalb des Bereiches und "HOCH" bei Werten über dem Messbereich angezeigt. Das Druckprotokoll zeigt jedoch Werte außerhalb des Bereiches mit Verweis auf den Grenzwert des Bereichs, z.B. ein pCO₂-Wert von 220 mmHg wird auf dem Protokoll folgendermaßen ausgedruckt:

 $pCO_2 > 200 \text{ mmHg}$ (Mess.Lim.)

Die Messbereiche der einzelnen Parameter sind im Abschnitt "Messparameter" dieser Gebrauchsanweisung angegeben.

³ J.B.Henry, Clinical Diagnosis and Management by Laboratory Methods, 19th Ed., 1996, p.590,777

9.5.10 Interferenzen

Ausgewählte endogene und exogene Substanzen wurden auf Interferenz in Übereinstimmung mit der CLSI-Richtlinie EP7-A2⁴ geprüft. Diese Substanzen wurden aufgrund ihrer optischen Absorptions- oder Fluoreszenzeigenschaften und deren mögliche Auswirkungen auf das vom OPTI CCA-TS2 gemessene Signal oder die optischen Eigenschaften des Sensors ausgewählt. Um eine Interferenz bei den optischen Sensoren hervorzurufen, müssen diese Substanzen sehr mobil (niedriges Molekulargewicht) und stark gefärbt sein, um die Optodenmembran schnell zu durchdringen (innerhalb von 90 Sek.), und dann das Licht der richtigen Farbe zu absorbieren oder emitieren. Um eine Interferenz bei tHb- und SO_2 -Messungen (Reflexion) hervorzurufen, müssen die Substanzen im Vergleich zu normalem Vollblut Rot- und Infrarotlicht stark absorbieren oder streuen.

Die folgenden Substanzen wurden im Vollblut mit von CLSI empfohlenen oder höheren Testkonzentrationen analysiert und zeigten <u>keine Interferenz</u> bei den gemessenen Parametern, einschließlich Blutgasen, Elektrolyten und tHb/ SO_2 :

Gallensäure (30 μmol/dL) Bilirubin (40 mg/dL) Betakarotin (3.0 mg/dL)

 Hämolyse (10%)
 Während der Hämolyse wird K⁺ aus den Blutzellen freigegeben, wodurch sich der gemessene K⁺-Wert erhöht. Auf die gleiche Weise bindet das von den Zellen freigegebene Protein ionisiertes Ca⁺⁺ und verringert damit die Calcium-Konzentration. Der gemessene Wert ist zwar genau, stellt aber die durch die Hämolyse verursachten tatsächlichen Veränderungen dar.

Lipämie (entsprechend 3000 mg/dL Triglyzeriden) Erhöhte weiße Blutkörperchen (30000 WBC/µL)

Die folgenden Substanzen wurden im Plasma mit von CLSI empfohlenen oder höheren Testkonzentrationen analysiert und verursachten keine Interferenz bei Blutgas- und Elektrolytparametern:

> Coumadin (Warfarin) (12 mg/dL) Dicumarol (Dicoumarin) (11 mg/dL) Prokain (Novakain) (13 mg/dL) Acetaminophen (Paracetamol) (20 mg/dL)

Das OPTI CCA-TS2 System wurde auf Störeinwirkungen durch die Probentemperatur (eisgekühlte Proben) untersucht. Es wurde keine messbare Sensitivität gegenüber der Probentemperatur beobachtet.

Weitere Informationen zu Interferenzen sind im Abschnitt "Messparameter" dieser Gebrauchsanweisung zu finden.

⁴ Clinical and Laboratory Standards Institute (CLSI). Interference Testing in Clinical Chemistry; Approved Guideline - 2nd Edition. CLSI document EP7-A2. CLSI, Wayne, PA, 2005

9.5.11 Zubehör

OPTI Sensorkassetten

Typ "B", BP7562 (pH, pCO₂, pO₂, tHb, SO₂)
Typ "E", BP7587 (pH, pCO₂, pO₂, Na⁺, K⁺, tHb, SO₂)
Typ "E-Ca", BP7560 (pH, pCO₂, pO₂, Na⁺, K⁺, Ca⁺⁺, tHb, SO₂)
Typ "E-Cl", BP7559 (pH, pCO₂, pO₂, Na⁺, K⁺, Cl, tHb, SO₂)
Typ "E-Glu", BP7564 (pH, pCO₂, pO₂, Na⁺, K⁺, Glu, tHb, SO₂)
Typ "E-BUN (Urea)", BP7588 (pH, pCO₂, pO₂, Na⁺, K⁺, BUN (Urea), tHb, SO₂)
Typ "B-Lac", BP7561 (pH, pCO₂, pO₂, Lac, tHb, SO₂)* (Zur Zeit in Deutschland nicht erhältlich)
Typ "E-Lyte CCA", BP7667 (pH, Na⁺, Ca⁺⁺, K⁺, Cl⁺)

Anwendung:	Zur Messung verschiedener Parameter im OPTI CCA-TS2 Analysator
Inhalt:	25 einzeln verpackte Kassetten pro Karton. Die Kunststoff-
	Einwegkassetten enthalten Puffersubstanzen und optische Sensoren.
Wirkstoffe:	wässrige HEPES-Bikarbonat Pufferlösung 0,2 mL mit Bioziden.
Lagerung:	siehe Verpackung
Haltbarkeit:	Verfallsdatum und Chargennummer sind auf der Produktetikettierung
	angegeben und im Barcode-Etikett codiert.

Multilevel Standardreferenzkassetten (SRC) BP7652

Awendung:	Zur Diagnose und täglichen Qualitätskontrolle des OPTI CCA-TS2
Inhalt:	Eine Mehrfach-SRC-Kassette pro Packung.
Wirkstoffe:	Stabilisierte Optoden-Sensoren mit Zielwerten:

	Level 1	Level 2	Level 3	
pН	7,080 - 7,120	7,380 - 7,420	7,580 -7,620	pH-Einheiten
PCO,	68,0 - 72,0	38,0 - 42,0	18,0 - 22,0	mmHg
PO, Ĩ	57,0 - 63,0	97,0 - 103,0	167,0 - 173,0	mmHg
Na [∓]	123,0 - 127,0	143,0 - 147,0	163,0 - 167,0	mmol/L
K^+	2,2 - 2,8	4,2 - 4,8	6,7 - 7,3	mmol/L
Ca^{++}	1,7 - 1,9	1,0 - 1,2	0,6 - 0,8	mmol/L
Cl-	78,0 - 82,0	103,0 - 107,0	128,0 - 132,0	mmol/L
Glu	36,0 - 44,0	106,0 - 114,0	296,0 - 304,0	mg/dL
Glu	2,00 - 2,44	5,88 - 6,33	16,43 - 16,87	mmol/L
BUN	4,2 - 7,0	26,6 - 29,4	68,6 - 71,4	mg/dL
Urea	1,5 - 2,5	9,5 - 10,5	24,5 - 25,5	mmol/L
Lac	0,70 - 1,30	2,00 - 3,00	4,50 - 5,50	mmol/L
Lac	6,3 - 11,7	18,0 - 27,0	40,5 - 49,5	mg/dL
tHb	18,5 - 21,5	12,5 - 15,5	6,5 - 9,5	g/dL
SO_2	68,0 - 72,0	88,0 - 92,0	96,0 - 100,0	%

Lagerung:

siehe Verpackung

Haltbarkeit:

Verfallsdatum und Chargennummer sind auf der Produktetikettierung angegeben und im Barcode-Etikett codiert.

Kalibriergas, BP7162

Anwendung:	Zur Kalibrierur	ng von pH, pCO, und pO, im OPTI CCA-TS2.
Inhalt:	Niederdruck-E	inwegkartusche enthält ca. 0,35 Liter Gas mit 28 psi
	bei 21 °C	
Wirkstoffe:	Sauerstoff	$14,0 \pm 0,02\%$
	Kohlendioxid	$6.0 \pm 0.02\%$
	Stickstoff	Rest
Lagerung:	Siehe Verpacku	ing.

Hb Kalibrierkasstte, BP7653

Anwendung:	Zur vierteljährlichen Kalibrierung des OPTI CCA-TS2
Inhalt:	Eine Mehrfach-Kalibrierkassette pro Packung.
Wirkstoffe:	Stabilisierte Optoden-Sensoren
Lagerung:	siehe Verpackung
Haltbarkeit:	Verfallsdatum und Chargennummer sind auf der Produktetikettierung
	angegeben und im Barcode-Etikett codiert.

Warnhinweise

Die Verwendung von nicht für OPTI Medical hergestellten Kalibrierlösungen, Kalibriergasen oder Optoden kann zur Aufhebung der Garantie führen.

Nach Gebrauch enthält die Kassette potentiell infektiöse Körperflüssigkeiten.

Bei Handhabung Hautkontakt und versehentliche Einnahme vermeiden.

Für den *in-vitro* diagnostischen Gebrauch!

Nur für den professionellen Gebrauch!.

Literaturhinweise

- 1. Guilbault GG, Ed., Practical Fluorescence, 2nd Edition, Marcel Dekker, 1990
- 2. Tietz; Burtis C, et al (Eds.), *Textbook of Clinical Chemistry and Molecular Diagnostics*, 4th Ed., (Elsevier Saunders, 2006) pps. 2252-2302.
- 3. J.B.Henry, Clinical Diagnosis and Management by Laboratory Methods, 19th Ed., 1996, p.590,777
- 4. Clinical and Laboratory Standards Institute (CLSI). *Interference Testing in Clinical Chemistry; Approved Guideline - 2nd Edition*. CLSI document EP7-A2. CLSI, Wayne, PA, 2005

10	ZUBEHÖR UND VERBRAUCHSMATERIALIEN	
10.1	Analysator	10-1
10.2	Kassetten	10-1
10.3	Kontrollmittel/Kalibratoren	10-1
10.4	Bedarfsartikel	10-2
10.5	Zubehör	10-2
10.6	Gebrauchsanweisungen	10-2
10.7	Ersatzteile	10-2
10.8	Technische Unterstützung	10-2

10 ZUBEHÖR UND VERBRAUCHSMATERIALIEN

Alle OPTI* CCA-TS2 Analysatoren werden mit Wartungsmaterialien und Zuberhör geliefert. Nachstehend finden Sie eine Liste aller notwendigen Bedarfsartikel.

Zum Bestellen von Ersatz- oder Zubehörteilen wenden Sie sich bitte an den OPTI Medical Kundendienst. Ihre OPTI Medical Vertreter werden Ihnen gerne bei der Auftragsstellung behilflich sein.

Beschreibung	Artikelnummer
10.1 Analysator	
OPTI CCA-TS2 mit Zubehörkit	GD7046
OPTI CCA-TS2 mit Zubehörkit (Rili-BÄK)	GD7046D
10.2 Kassetten	
OPTI Sensorkassette 'B' (25 pro Packung)	BP7562
OPTI Sensorkassette 'E' (25 pro Packung)	BP7587
OPTI Sensorkassette 'E-Ca' (25 pro Packung)	BP7560
OPTI Sensorkassette 'E-Cl' (25 pro Packung)	BP7559
OPTI Sensorkassette 'E-Glu' (25 pro Packung)	BP7564
OPTI Sensorkassette 'E-BUN(Urea)' (25 pro Packung)	BP7588
OPTI Sensorkassette 'B-Lac' ¹ (25 pro Packung)	BP7561
OPTI Sensorkassette 'B60' (25 pro Packung)	BP7586
OPTI Sensorkassette 'E-Lyte CCA' (25 pro Packung)	BP7667
10.3 Kontrollmittel/Kalibratoren	
Multilevel Standardreferenzkassette (SRC)	BP7652
OPTI CHECK, Trilevel	HC7008
OPTI CHECK PLUS, Trilevel	HC7009
tHb-Kalibrierkassette	BP7653

¹ Dieses Produkt ist zur Zeit in Deutschland nicht erhältlich.

Beschreibung	Artikelnummer
10.4 Bedarfsartikel	
Druckerpapier (1Rolle)	HP0070
Kalibriergasflasche (1 Flasche)	BP7162
Kapillarröhrchen (250 Stck.)	MC0024
ComfortSampler mit Zubehör	BP0600
ComfortSampler Grundausstattung	BP0610
ComfortSampler ohne Kanüle (Großpackung)	BP0630
ComfortSampler mit Kanüle mit Schutzkappe (Großpackung)	BP0640
Saugröhre, E-Lyte CCA Kassette (26 Stck.)	BP7183
10.5 Zubehör	
Wiederaufladbare Batterie	EI7019
Tragetasche	YB7025
Eingabestift, Touchscreen	BP7245
10.6 Gebrauchsanweisungen Gebrauchsanweisung	PD7302
10.7 Ersatzteile	
Peristaltikpumpenkassette	BP7012
Netzteil	EI7020
Stromkabel, Schuko	EX0173
Dichtung, Messkammer Gas E/A Port	RE7030

10.8 Technische Unterstützung

Für technische Unterstützung wenden Sie sich bitte an den OPTI Medical Kundendienst.

MESSPARAMETER

pH-1
pH-B-1
PCO2-1
PCO2-B-1
PO2-1
PO2-B-1
Na-1
K-1
Ca-1
CI-1
Glu-1
BUN-1
Lac-1
THB/SO2-1

рН

Klinische Bedeutung¹

Der pH-Wert im Blut, Serum oder Plasma ist einer der wichtigsten Faktoren bei der Beurteilung des Säure-Basenhaushalts eines Patienten. Der pH-Wert ist ein Indikator des Gleichgewichts zwischen Puffer-(Blut), Nieren- und Atmungssystem (Lungen). Die Ursachen eines abnormalen Blut-pH-Wertes werden im Allgemeinen wie folgt klassifiziert:

- a) Primärer Abfall der Bikarbonatkonzentration metabolische Azidose
- b) Primärer Anstieg der Bikarbonatkonzentration metabolische Alkalose
- c) Primäre Hypoventilation respiratorische Azidose
- d) Primäre Hyperventilation respiratorische Alkalose

Eine Erhöhung des pH-Werts im Blut, Serum oder Plasma (Alkaliämie) kann durch eine erhöhte Bikarbonatkonzentration im Plasma verursacht werden, oder ein Zeichen einer respiratorischen Alkalose auf Grund einer erhöhten Abatmung von CO₂ als Folge von Hyperventilation sein.

Eine Verminderung des pH-Werts (Azidämie) im Blut, Serum oder Plasma kann als Folge einer erhöhten Bildung organischer Säuren, einer erhöhten Ausscheidung von H⁺-Ionen bei bestimmten Nierenerkrankungen, einer erhöhten Säureaufnahme, z. B. bei Salicylatvergiftung oder durch den Verlust alkalischer Körperflüssigkeiten eintreten. Eine respiratorische Azidose wird durch eine verminderte alveolare Beatmung verursacht und ist entweder akut, als Folge eines Lungenödems, einer Atemwegsobstruktion oder der Verabreichung von Medikamenten, oder chronisch als Folge obstruktiver oder restriktiver Atemwegserkrankungen.

Messprinzip

Das Messprinzip der pH-Optode basiert auf pH-abhängigen Veränderungen der Lumineszenz eines Farbstoffmoleküls, das in der Optode immobilisiert wurde. Derartige pH-Indikatorfarbstoffe wurden von Chemikern über viele Jahre bei Säure-Basen-Titrierungen in optisch trüben Stoffen verwendet.

Die Beziehung zwischen Lumineszenz und pH wird durch eine Variante des chemischen Massenwirkungsgesetzes quantifiziert,

$$I_0 / I = 1 + 10^{pKa-pH}$$

welche beschreibt, wie die Intensität der Fluoreszenzemission sich erhöht, wenn der Blut-pH-Wert über dem charakteristischen pKa-Wert des Farbstoffes liegt². pH-Optoden benötigen keine Referenzelektrode zur pH-Messung. Sie zeigen jedoch eine leichte Sensitivität gegenüber der Ionenstärke der gemessenen Probe³.

Messbereich

Bereich	Auflösung (Niedrig/Hoch)	Einheiten
6,6 - 7,8	0,01/0,001	pH-Einheiten

NIEDRIG	NORMAL	НОСН	Einheiten
7,100 ± 0,02	7,400 ± 0,02	7,600 ± 0,02	pH-Einheiten

Grenzwerte der Standardreferenzkassetten (SRC)

Interferenzen

Messungen mit pH-Optoden haben eine bekannte Sensitivität gegenüber der Ionenstärke des Blutes³, die hauptsächlich durch eine Abweichung im Serum-Natriumgehalt bestimmt ist. Der OPTI CCA-TS2 benutzt einen internen Na⁺-Sensor zum Ausgleich dieser Sensitivität. Das bedeutet, dass bei vom OPTI CCA-TS2 gemessenen pH-Werten keine wesentlichen Störungen durch hypo- oder hypernatriämische Proben, oder Abweichungen der Ionenstärke innerhalb des physiologischen Bereichs von 100 bis190 mmol/L auftreten.

Als Gerinnungshemmer sollten nur Heparinsalze verwendet werden. Andere Gerinnungshemmer, wie z.B. Citrat, EDTA, Oxalat und Fluorid, können ernsthafte Störeinwirkungen auf die pH-Sensoren haben.

In tonometriertem Plasma besteht eine Sensitivität gegenüber Farbstoffen mit kurzer Halbwertszeit im Körper vor der Metabolisierung durch die Leber. Bei den Interferenztests wurden die folgenden exogenen Störsubstanzen quantifiziert. Diese Untersuchungen wurden mit OPTI CCA Analysatoren mit einem Standard OPTI pH-Sensor durchgeführt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, sind die Störeinwirkungen beider Geräte identisch.

Substanz	Menge	Abweichung
Natrium-Fluoreszein	26 mg/dL	instabil
Indozyanin-Grün	0,5 mg/dL	-0,04
Methylen-Blau	25 mg/dL	-0,16

Im OPTI CCA-TS2 System sollten nur klare, farblose Qualitätskontrollmittel, wie z.B. OPTI CHECK oder OPTI CHECK PLUS Kontrollmittel verwendet werden. Gefärbte Materialien, einschließlich Ringversuchs-Testmaterialien, können eine störende Einwirkung auf die pH-Messung haben, oder nicht richtig eingesaugt werden.
Reproduzierbarkeit

Kontrollmittel

Die typische Präzision in der Serie (S_{wr}) und Gesamt (S_T) wurde mit 2 Serien pro Tag und 2 Replikaten pro Serie über einen Zeitraum von 20 Tagen nach der CLSI-Richtlinie EP5-A2 bestimmt. Die nachfolgende Tabelle zeigt typische Ergebnisse für 3 verschiedene Kontrollmittel-Level.

рН	OPTI Check Level 1	OPTI Check Level 2	OPTI Check Level 3
Tage	20	20	20
Gesamt-Durchschnitt	7,151	7,415	7,624
StdAbw. in der Serie (S_{wr})	0,003	0,006	0,005
% CV in der Serie	0,0%	0,1%	0,1%
StdAbw. Gesamt-Präzision (S_{τ})	0,005	0,007	0,007
Gesamt % CV	0,1%	0,1%	0,1%

Vollblut

Die Präzision in der Serie wurde in Vollblutmessungen mit 3 verschiedenen Konzentrationen mit dem OPTI CCA-TS2 bewertet. Die folgende Tabelle zeigt Durchschnitt, Standardabweichung und Variationskoeffizient für 10 Messungen pro Level.

рН	Vollblut			
	Level 1	Level 2	Level 3	
Durchschnitt	7,134	7,341	7,518	
StdAbw.	0,004	0,006	0,009	
%CV	0,05%	0,08%	0,13%	
n	10	10	10	

Linearität

Soweit möglich wurde die Linearität der OPTI CCA-TS2 Messungen im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität des pH-Sensors des OPTI CCA-TS2 wurde im Vergleich zum OPTI CCA-TS erstellt. Zur Feststellung der Korrelation wurden mit verschiedenen CO₂-Gasmischungen tonometrierte Vollblutproben verwendet.

Korrelation mit anderen Methoden⁴

OPTI CCA im Vergleich zu anderen pH-/Butgasmessgeräten - Messung von Vollblut unter Laborbedingungen

Restaliquote von zur Blutgasanalyse entnommenen Blutproben wurden von traditionellen und nicht traditionellen Blutgasgerät-Benutzern in Krankenhauslabors untersucht. Das Blut wurde mit dem OPTI CCA analysiert, nach Erhalt der erforderlichen Messergebnisse der Vergleichsgeräte, die nach bestehenden Verfahren gehandhabt und überprüft wurden.

Vergleichsmethode* (Vollblut)	Steigung	Achsen- abschnitt	Korrelations- koeffizient	Sy.x	Bereich	n
Analysator A	0,9269	0,534	0,9789	0,013	7,19 - 7,52	103
Analysator B	1,0800	-0,579	0,9954	0,009	7,01 - 7,55	173
Analysator C	1,126 ± 0,018	-0,946 ± 0,134	0,9868	0,018	7,09 - 7,58	105
Analysator D	1,003 ± 0,008	-0,032 ± 0,058	0,9947	0,014	6,86 - 7,63	174
Analysator E	1,104 ± 0,010	-0,739 ± 0,077	0,9919	0,014	6,80 - 7,62	183

Korrelation

* Für weitere Informationen zu Vergleichsgeräten wenden Sie sich bitte an den Kundendienst.

Vergleich OPTI CCA-TS2 / OPTI CCA-TS - Vollblutmessungen unter Laborbedingungen

Der Methodenvergleich wurde nach den Empfehlungen der CLSI Richtlinie EP9-A2, Ausgabe 15, Nr. 19 mit Vollblutproben auf dem OPTI CCA-TS2 und dem OPTI CCA-TS durchgeführt.

Literaturhinweise

- Tietz, Norbert W., Ed., *Clinical Guide to Laboratory Tests*, 2nd Ed., (Philadelphia: W.B.Saunders, Co., 1990) p. 436.
- 2. Peterson JI, et.al., A Fiber Optic pH Probe for Physiological Use, Anal.Chem. 53, p.864, 1980.
- 3. Wolfbeis OS, Offenbacher H, *Fluorescence Sensor for Monitoring Ionic Strength and Physiological pH Values*, Sensors and Actuators 9, p.85, 1986.
- 4. OPTI Medical. Modellgleichung der Regressionsstatistik: [Ergebnisse des OPTI Analysators] = Steigung(m) [Ergebnisse der Vergleichsmethode] + Achsenabschnitt (b).

pH (Trockensensor - B-Lac-Kassette*)

Klinische Bedeutung¹

Der pH-Wert im Blut, Serum oder Plasma ist einer der wichtigsten Faktoren bei der Beurteilung des Säure-Basenhaushalts eines Patienten. Der pH-Wert ist ein Indikator des Gleichgewichts zwischen Puffer-(Blut), Nieren- und Atmungssystem (Lungen). Die Ursachen eines abnormalen Blut-pH-Wertes werden im Allgemeinen wie folgt klassifiziert:

- a) Primärer Abfall der Bikarbonatkonzentration metabolische Azidose
- b) Primärer Anstieg der Bikarbonatkonzentration metabolische Alkalose
- c) Primäre Hypoventilation respiratorische Azidose
- d) Primäre Hyperventilation respiratorische Alkalose

Eine Erhöhung des pH-Werts im Blut, Serum oder Plasma (Alkaliämie) kann durch eine erhöhte Bikarbonatkonzentration im Plasma verursacht werden, oder ein Zeichen einer respiratorischen Alkalose auf Grund einer erhöhten Abatmung von CO₂ als Folge von Hyperventilation sein.

Eine Verminderung des pH-Werts (Azidämie) im Blut, Serum oder Plasma kann als Folge einer erhöhten Bildung organischer Säuren, einer erhöhten Ausscheidung von H⁺-Ionen bei bestimmten Nierenerkrankungen, einer erhöhten Säureaufnahme, z. B. bei Salicylatvergiftung oder durch den Verlust alkalischer Körperflüssigkeiten eintreten. Eine respiratorische Azidose wird durch eine verminderte alveolare Beatmung verursacht und ist entweder akut, als Folge eines Lungenödems, einer Atemwegsobstruktion oder der Verabreichung von Medikamenten, oder chronisch als Folge obstruktiver oder restriktiver Atemwegserkrankungen.

Messprinzip

Das Messprinzip der pH-Optode basiert auf pH-abhängigen Veränderungen der Lumineszenz eines Farbstoffmoleküls, das in der Optode immobilisiert wurde. Derartige pH-Indikatorfarbstoffe wurden von Chemikern über viele Jahre bei Säure-Basen-Titrierungen in optisch trüben Stoffen verwendet.

Die Beziehung zwischen Lumineszenz und pH wird durch eine Variante des chemischen Massenwirkungsgesetzes quantifiziert, welche beschreibt, wie die Intensität der Fluoreszenzemission des pH-Trockensensors sich reduziert, wenn der Blut-pH-Wert über dem charakteristischen pKa-Wert des Farbstoffes liegt.

$$\frac{I_0}{I} = \frac{1 - 10^{pH-pKa}}{R - 10^{pH-pKa}}$$

R stellt das Verhältnis der minimalen Fluoreszenzintensität (pH >> pKa) zur maximalen Fluoreszenzintensität (pH << pKa) dar. pH-Optoden benötigen keine Referenzelektrode zur pH-Messung. Sie zeigen jedoch eine leichte Sensitivität gegenüber der Ionenstärke der gemessenen Probe².

^{*} B-Lac Kassetten sind zur Zeit in Deutschland nicht erhältlich.

Messbereich

Bereich	Auflösung (Niedrig/Hoch)	Einheiten
6,6 - 7,8	0,01/0,001	pH-Einheiten

Grenzwerte der Standardreferenzkassetten (SRC)

NIEDRIG	DRIG NORMAL HOCH		Einheiten
$7,100 \pm 0,02$	$7,400 \pm 0,02$	$7,600 \pm 0,02$	pH-Einheiten

Interferenzen

In tonometriertem Vollblut besteht eine Sensitivität gegenüber Farbstoffen mit kurzer Halbwertszeit im Körper vor der Metabolisierung durch die Leber. Bei dem Interferenztest wurde tonometriertes Vollblut mit bestimmten endogenen und exogenen Substanzen nach Angaben der CLSI Richtlinie EP7-A2 versetzt und auf Interferenzen geprüft. Hierbei wurden die folgenden exogenen Störsubstanzen quantifiziert. Diese Untersuchungen wurden mit OPTI CCA Analysatoren mit einem Standard OPTI pH-Sensor durchgeführt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, sind die Störeinwirkungen beider Geräte identisch.

Substanz	Konzentration	pH-Wert	Interferenz
Daraaatamal	1.66 mM	7,170	NEIN
Falacelamoi	1,00 1110	7,520	NEIN
Apotul Solioul Söuro	2.22 mM	7,170	NEIN
Acetyr-Salicyr-Saure	3,35 11101	7,520	NEIN
Accorbingäuro	0.22 mM	7,170	NEIN
Ascorbinsaure	0,23 11111	7,520	NEIN
B-Hydroxy-Buttersäure	16.02 mM	7,170	NEIN
	16,03 mivi	7,520	NEIN
Diliguhin	0,26 mM	7,170	NEIN
Dilliupin		7,520	NEIN
Indozyanin-Grün	0,0065 mM	7,170	NEIN
		7,520	NEIN
Zuotoin	6,41 mM	7,170	NEIN
Zystein		7,520	NEIN
Ethonol	96.9 mM	7,170	NEIN
Ethanoi	00,0 11110	7,520	NEIN
Evono Plou	0.0104 mM	7,170	0,140
Evalis-Diau	0,0104 1110	7,520	NEIN
Chycoloğuro	10 mM	7,170	NEIN
Giycolsaure	10 mM	7,520	NEIN
Halothan	0.750 mM	7,170	NEIN
Halothan	0,759 1110	7,520	NEIN

Substanz	Konzentration	pH-Wert	Interferenz
lbunrofon	2.42 mM	7,170	NEIN
louproteri	2,43 11111	7,520	NEIN
Intralipid	10/	7,170	NEIN
	1 70	7,520	NEIN
Methylenblau	0,125 mM	7,170	NEIN
		7,520	0,033
Natriumchlorid	20 mM	7,170	NEIN
	20 mivi	7,520	NEIN

In einer Interferenzstudie für die OPTI LION 510(k) Zulassung (USA) wurden bei den folgenden Sustanzen Störeinwirkungen auf den pH-Trockensensor festgestellt.

Substanz	Test-Level	Abweichung
Natriumbisulfat	11,5mM	-0,16
Phenylacetylsäure	10,0mM	-0,12
Methylen-Blau	25mg/dL	instabil
Fluoreszein	25mg/dL	instabil

Reproduzierbarkeit

Kontrollmittel

Die typische Präzision in der Serie (S_{wr}) und Gesamt (S_T) wurde mit 2 Serien pro Tag und 2 Replikaten pro Serie über einen Zeitraum von 20 Tagen nach der CLSI-Richtlinie EP5-A2 bestimmt. Die nachfolgende Tabelle zeigt typische Ergebnisse für 3 verschiedene Kontrollmittel-Level:

pH Trockensensor	OPTI Check Level 1	OPTI Check Level 2	OPTI Check Level 3
Таде	20	20	20
Gesamt-Durchschnitt	7,168	7,418	7,632
StdAbw. in der Serie (S _{wr})	0,011	0,008	0,007
% CV in der Serie	0,2%	0,1%	0,1%
StdAbw. Gesamt-Präzision (S_{τ})	0,015	0,011	0,011
Gesamt % CV	0,2%	0,1%	0,1%

Vollblut

Die Präzision in der Serie wurde in Vollblutmessungen mit 3 verschiedenen Konzentrationen mit dem OPTI CCA-TS2 bewertet. Die folgende Tabelle zeigt Durchschnitt, Standardabweichung und Variationskoeffizient für 10 Messungen pro Level.

pH Trockensensor	Vollblut			
	Level 1	Level 2	Level 3	
Durchschnitt	7,174	7,352	7,558	
StdAbw.	0,011	0,019	0,012	
%CV	0,16%	0,26%	0,17%	
n	10	10	10	

Linearität

Soweit möglich wurde die Linearität der OPTI CCA-TS2 Messungen im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität des pH-Sensors des OPTI CCA-TS2 wurde im Vergleich zum OPTI CCA-TS erstellt. Zur Feststellung der Korrelation wurden mit verschiedenen CO₂-Gasmischungen tonometrierte Vollblutproben verwendet.

Korrelation mit anderen Methoden³

OPTI CCA-TS im Vergleich zu anderen pH-/Butgasmessgeräten - Messung von Vollblut unter Laborbedingungen

Restaliquote von zur Blutgasanalyse entnommenen Blutproben wurden von traditionellen und nicht traditionellen Blutgasgerät-Benutzern in Krankenhauslabors untersucht. Das Blut wurde mit dem OPTI CCA-TS analysiert, nach Erhalt der erforderlichen Messergebnisse der Vergleichsgeräte, die nach bestehenden Verfahren gehandhabt und überprüft wurden.

Korrelation

Vergleichsmethode* (Vollblut)	Steigung	Achsen- abschnitt	R ²	Sy.x	Bereich	n
OPTI R	0,96	0,27	0,984	0,019	6,78 - 7,54	147
Analysator A	1,03	-0,20	0,968	0,015	7,091 - 7,538	111

* Für weitere Informationen zu Vergleichsgeräten wenden Sie sich bitte an den Kundendienst.

Vollblutmessungen im OPTI CCA-TS2 mit B-Lac-Kassette im Vergleich zu anderen pH-Messgeräten (hausinterne Messungen)

Vollblutproben mehrerer Probanden wurden mit Gasmischungen mit unterschiedlichem CO_2 -Gehalt tonometriert, um ein breites Spektrum an pH-Werten zu erhalten. Die Proben wurden parallel mit B-Lac-Kassetten und anderen Laborgeräten gemessen.

Korrelation

Vergleichsmethode* (Vollblut)	Steigung	Achsen- abschnitt	R ²	Sy.x	Bereich	n
Analysator B	1,03	-0,21	0,996	0,016	6,578 - 7,661	174
Analysator C	1,03	-0,19	0,996	0,015	6,582 - 7,701	174

* Für weitere Informationen zu Vergleichsgeräten wenden Sie sich bitte an den Kundendienst.

Vergleich OPTI CCA-TS2 / OPTI CCA-TS - Vollblutmessungen unter Laborbedingungen

Der Methodenvergleich wurde nach den Empfehlungen der CLSI Richtlinie EP9-A2, Ausgabe 15, Nr. 19 mit Vollblutproben auf dem OPTI CCA-TS2 und dem OPTI CCA-TS durchgeführt.

Literaturhinweise

- 1. Tietz, Norbert W., Ed., *Clinical Guide to Laboratory Tests*, 2nd Ed., (Philadelphia: W.B.Saunders, Co., 1990) p. 436.
- 2. Wolfbeis OS, Offenbacher H, *Fluorescence Sensor for Monitoring Ionic Strength and Physiological pH Values*, Sensors and Actuators 9, p.85, 1986.
- OPTI Medical. Modellgleichung der Regressionsstatistik: [Ergebnisse des OPTI Analysators] = Steigung(m) [Ergebnisse der Vergleichsmethode] + Achsenabschnitt (b).

PCO₂

Klinische Bedeutung¹

Mit Hilfe des Kohlendioxid-Partialdrucks (pCO_2) im arteriellen Blut kann die Abatmung von Kohlendioxid, einem Stoffwechselprodukt, beurteilt werden. Ein pCO_2 -Wert unter dem Normalbereich wird als respiratorische Alkalose bezeichnet und ist ein Zeichen von *Hypokapnie*, einer Stoffwechselstörung, die durch eine erhöhte alveolare Beatmung als Folge von Hyperventilation eintreten kann. Ein arterieller pCO_2 -Wert über dem Normalbereich wird als respiratorische Azidose bezeichnet und ist ein Zeichen von *Hyperkapnie*, einer Hypoventilation und respiratorischen Insuffizienz als Folge von Herzstillstand, chronischer obstruktiver Atemwegserkrankungen, Drogenüberdosis oder chronischer metabolischer Säure-Basen-Störungen.

Messprinzip

Beim Messprinzip der pCO₂-Optode wird eine pH-Optode hinter einer ionen-undurchlässigen Membran positioniert², entsprechend dem Konstruktionsprinzip der Severinghaus-CO₂-Elektroden, das bei herkömmlichen pCO₂-Blutgaselektroden benutzt wird. Die pCO₂-Optoden sind für unselektive Störungen durch flüchtige Säuren und Basen genauso anfällig wie herkömmliche pCO₂-Elektroden.

Der pCO₂-Partialdruck wird laut Daltonschem Gesetz vom lokalen Luftdruck beeinflusst. Der OPTI CCA-TS2 hat einen integrierten Drucktransducer, der den lokalen Luftdruck genau mißt und automatisch ausgleicht. Der OPTI CCA-TS2 wird im Werk auf den absoluten Luftdruck kalibriert.

Bereich	Auflösung (Niedrig/Hoch)	Einheiten
10 - 200	1/0,1	mmHg
1,33 - 26,66	0,1/0,01	kPa

Messbereich

Grenzwerte der Standardreferenzkassetten (S	SRC)
---	------

NIEDRIG	NORMAL	НОСН	Einheiten
70,0 ± 2,0	40,0 ± 2,0	20,0 ± 2,0	mmHg
9,33 ± 0,27	5,33 ± 0,27	2,67 ± 0,27	kPa

Interferenzen

Die Interferenztests wurden mit OPTI CCA Analysatoren mit einem Standard OPTI pCO₂-Sensor durchgeführt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, sind die Störeinwirkungen beider Geräte identisch.

Im OPTI CCA-TS2 System sollten nur klare, farblose Qualitätskontrollmittel, wie z.B. OPTI CHECK oder OPTI CHECK PLUS Kontrollmittel verwendet werden. Gefärbte Materialien, einschließlich Ringversuchs-Testmaterialien, können eine störende Einwirkung auf die pCO₂-Messung haben, oder nicht richtig eingesaugt werden.

Reproduzierbarkeit

Kontrollmittel

Die typische Präzision in der Serie (Swr) und Gesamt (ST) wurde mit 2 Serien pro Tag und 2 Replikaten pro Serie über einen Zeitraum von 20 Tagen nach der CLSI-Richtlinie EP5-A2 bestimmt. Die nachfolgende Tabelle zeigt typische Ergebnisse für 3 verschiedene Kontrollmittel-Level:

PCO ₂ (mmHg)	OPTI Check Level 1	OPTI Check Level 2	OPTI Check Level 3
Tage	20	20	20
Gesamt-Durchschnitt	74,5	45,0	24,8
StdAbw. in der Serie (S_{wr})	0,8	0,3	0,3
% CV in der Serie	1,1%	0,7%	1,1%
StdAbw. Gesamt-Präzision (S_{T})	0,9	0,5	0,4
Gesamt % CV	1,3%	1,0%	1,5%

Vollblut

Die Präzision in der Serie wurde in Vollblutmessungen mit 3 verschiedenen Konzentrationen mit dem OPTI CCA-TS2 bewertet. Die folgende Tabelle zeigt Durchschnitt, Standardabweichung und Variationskoeffizient für 10 Messungen pro Level.

PCO ₂ (mmHg)	Vollblut		
	Level 1	Level 2	Level 3
Durchschnitt	21,4	46,2	91,6
StdAbw.	0,3	0,4	1,7
%CV	1,60%	0,90%	1,82%
n	10	10	10

Linearität

Soweit möglich wurde die Linearität der OPTI CCA-TS2 Messungen im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität des pCO₂-Sensors des OPTI CCA-TS2 wurde im Vergleich zum OPTI CCA-TS erstellt. Zur Feststellung der Korrelation wurden mit verschiedenen CO_2 -Gasmischungen tonometrierte Vollblutproben verwendet.

Korrelation mit anderen Methoden³

OPTI CCA im Vergleich zu anderen Butgasgeräten - Messung von Vollblut unter Laborbedingungen

Restaliquote von zur Blutgasanalyse entnommenen Blutproben wurden von traditionellen und nicht traditionellen Blutgasgerät-Benutzern in Krankenhauslabors untersucht. Das Blut wurde mit dem OPTI CCA analysiert, nach Erhalt der erforderlichen Messergebnisse der Vergleichsgeräte, die nach bestehenden Verfahren gehandhabt und überprüft wurden.

Korrelation

Vergleichsmethode* (Vollblut)	Steigung	Achsen- abschnitt	Korrelations- koeffizient	Sy.x	Bereich	n
Analysator A	0,9751	1,623	0,9871	1,16	28 - 72	103
Analysator B	0,9740	2,66	0,9937	1,12	24 - 92	173
Analysator C	0,988 ± 0,022	0,807± 1,015	0,9750	2,584	23 - 81	105
Analysator D	1,073 ± 0,011	-2,785 ± 0,521	0,9910	2,050	17 - 122	174
Analysator E	1,067 ± 0,009	-4,41 ± 0,468	0,9936	1,817	22 - 120	183

* Für weitere Informationen zu Vergleichsgeräten wenden Sie sich bitte an den Kundendienst.

Vergleich OPTI CCA-TS2 / OPTI CCA-TS - Vollblutmessungen unter Laborbedingungen

Der Methodenvergleich wurde nach den Empfehlungen der CLSI Richtlinie EP9-A2, Ausgabe 15, Nr. 19 mit Vollblutproben auf dem OPTI CCA-TS2 und dem OPTI CCA-TS durchgeführt.

Literaturhinweise

- 1. Tietz, Norbert W., Ed., *Clinical Guide to Laboratory Tests*, 2nd Ed., (Philadelphia: W.B.Saunders, Co., 1990) p. 436.
- Vurek GG, Feustel PJ, Severinghaus JW, A Fiber Optic PCO₂ Sensor, Ann.Biomed.Eng. 11, p.499, 1983.
- OPTI Medical. Modellgleichung der Regressionsstatistik: [Ergebnisse des OPTI Analysators] = Steigung(m) [Ergebnisse der Vergleichsmethode] + Achsenabschnitt (b).

PCO, (Trockensensor - B-Lac-Kassette*)

Klinische Bedeutung¹

Mit Hilfe des Kohlendioxid-Partialdrucks (pCO_2) im arteriellen Blut kann die Abatmung von Kohlendioxid, einem Stoffwechselprodukt, beurteilt werden. Ein pCO_2 -Wert unter dem Normalbereich wird als respiratorische Alkalose bezeichnet und ist ein Zeichen von *Hypokapnie*, einer Stoffwechselstörung, die durch eine erhöhte alveolare Beatmung als Folge von Hyperventilation eintreten kann. Ein arterieller pCO_2 -Wert über dem Normalbereich wird als respiratorische Azidose bezeichnet und ist ein Zeichen von *Hyperkapnie*, einer Hypoventilation und respiratorischen Insuffizienz als Folge von Herzstillstand, chronischer obstruktiver Atemwegserkrankungen, Drogenüberdosis oder chronischer metabolischer Säure-Basen-Störungen.

Messprinzip

Beim Messprinzip der pCO_2 -Optode wird eine pH-Optode hinter einer gas-durchlässigen Membran positioniert zur Messung der Änderung der Wasserstoffkonzentration in der internen Lösung, wenn CO_2 die gasdurchlässige Membran durchdringt. Die Reaktionsfolge gestaltet sich folgendermaßen:

 $CO_2 + H_2O \rightarrow H_2CO_3 \rightarrow H^+ + HCO_3^-$

Die Änderung der Wasserstoffkonzentration wird von einem optischen pH-Sensor gemessen. Die Änderung der Wasserstoffionenkonzentration ist proportional zum Kohlendioxidpartialdruck der Probe.

Bereich	Auflösung (Niedrig/Hoch)	Einheiten
10 - 200	1/0,1	mmHg
1,33 - 26,66	0,1/0,01	kPa

Messbereich

Grenzwerte der S	tandardreferenzkassetten ((SRC)
------------------	----------------------------	-------

NIEDRIG	NORMAL	НОСН	Einheiten
70,0 ± 2,0	40,0 ± 2,0	20,0 ± 2,0	mmHg
9,33 ± 0,27	5,33 ± 0,27	2,67 ± 0,27	kPa

^{*} B-Lac-Kassetten sind zur Zeit in Deutschland nicht erhältlich.

Interferenzen

In tonometriertem Vollblut besteht eine Sensitivität gegenüber Farbstoffen mit kurzer Halbwertszeit im Körper vor der Metabolisierung durch die Leber. Bei dem Interferenztest wurde tonometriertes Vollblut mit bestimmten endogenen und exogenen Substanzen nach Angaben der CLSI Richtlinie EP7-A2 versetzt und auf Interferenzen geprüft. Hierbei wurden die folgenden exogenen Störsubstanzen quantifiziert. Diese Untersuchungen wurden mit OPTI CCA Analysatoren mit einem Standard OPTI pCO₂-Sensor durchgeführt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, sind die Störeinwirkungen beider Geräte identisch.

Substanz	Konzentration	pCO ₂ -Gehalt	Interferenz
Darapotamol	1.66 mM	83 mmHg	NEIN
Falacelailioi	1,00 1110	17 mmHg	NEIN
Acotul Solioul Söuro	2.22 mM	83 mmHg	NEIN
Acelyi-Salicyi-Saure	3,33 11101	17 mmHg	NEIN
Accorbinaciura	0.22 mM	83 mmHg	NEIN
Ascorbinsaure	0,23 1110	17 mmHg	NEIN
P. Hydroxy, Puttoroöuro	16.02 mM	83 mmHg	NEIN
D-Hyuloxy-Dulleisaule	10,05 1110	17 mmHg	NEIN
Dilinuhin	0.26 mM	83 mmHg	NEIN
DIIIIUDIII	0,20 1110	17 mmHg	NEIN
Indozvanin Crün	0,0065 mM	83 mmHg	NEIN
indozyanin-Grun		17 mmHg	NEIN
Zuotoin	6,41 mM	83 mmHg	NEIN
Zystein		17 mmHg	NEIN
Eth an al	86,8 mM	83 mmHg	NEIN
Ellianoi		17 mmHg	NEIN
Evans Plau	0.0104 mM	83 mmHg	-24,68 mmHg
Evans-biau	0,0104 1110	17 mmHg	NEIN
Clycolsäuro	10 mM	83 mmHg	NEIN
Giycolsaule	TO THIM	17 mmHg	NEIN
Halothan	0.750 mM	83 mmHg	NEIN
Talottall	0,759 1110	17 mmHg	NEIN
lbunrofon	2.43 mM	83 mmHg	NEIN
ibupioleli	2,45 1110	17 mmHg	NEIN
Introlinid	10/	83 mmHg	NEIN
Intralipio	1 70	17 mmHg	NEIN
Mothylophlau	0.125 mM	83 mmHg	NEIN
weuryienbiau	0,12311111	17 mmHg	NEIN
Natriumoblorid	20 mM	83 mmHg	NEIN
Nathumeniond	20 11111	17 mmHg	NEIN

Reproduzierbarkeit

Kontrollmittel

Die typische Präzision in der Serie (S_{wr}) und Gesamt (S_T) wurde mit 2 Serien pro Tag und 2 Replikaten pro Serie über einen Zeitraum von 20 Tagen nach der CLSI-Richtlinie EP5-A2 bestimmt. Die nachfolgende Tabelle zeigt typische Ergebnisse für 3 verschiedene Kontrollmittel-Level:

PCO ₂ -Trockensensor (mmHg)	OPTI Check Level 1	OPTI Check Level 2	OPTI Check Level 3
Таде	20	20	20
Gesamt-Durchschnitt	72,6	43,1	22,5
StdAbw. in der Serie (S _{wr})	0,8	0,3	0,3
% CV in der Serie	1,1%	0,7%	1,4%
StdAbw. Gesamt-Präzision (S_{T})	1,2	0,6	0,4
Gesamt % CV	1,6%	1,3%	2,0%

Vollblut

Die Präzision in der Serie wurde in Vollblutmessungen mit 3 verschiedenen Konzentrationen mit dem OPTI CCA-TS2 bewertet. Die folgende Tabelle zeigt Durchschnitt, Standardabweichung und Variations-koeffizient für 10 Messungen pro Level.

PCO ₂ -Trockensensor (mmHg)	Vollblut		
	Level 1	Level 2	Level 3
Durchschnitt	19,6	44,4	92,8
StdAbw.	0,357	0,316	1,088
%CV	1,82%	0,71%	1,17%
n	10	10	10

Linearität

Soweit möglich wurde die Linearität der OPTI CCA-TS2 Messungen im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität des pCO₂-Sensors des OPTI CCA-TS2 wurde im Vergleich zum OPTI CCA-TS erstellt. Zur Feststellung der Korrelation wurden mit verschiedenen CO₂-Gasmischungen tonometrierte Vollblutproben verwendet.

Korrelation mit anderen Methoden²

OPTI CCA-TS im Vergleich zu anderen Butgasgeräten - Messung von Vollblut unter Laborbedingungen

Restaliquote von zur Blutgasanalyse entnommenen Blutproben wurden von traditionellen und nicht traditionellen Blutgasgerät-Benutzern in Krankenhauslabors untersucht. Das Blut wurde mit dem OPTI CCA-TS analysiert, nach Erhalt der erforderlichen Messergebnisse der Vergleichsgeräte, die nach bestehenden Verfahren gehandhabt und überprüft wurden.

Korrelation

Vergleichsmethode* (Vollblut)	Steigung	Achsen- abschnitt	R ²	Sy.x	Bereich	n
OPTI R	0,99	4,15	0,984	3,53	21 - 184	146
Analysator A	0,94	1,88	0,982	1,62	22,7 - 93,2	112

* Für weitere Informationen zu Vergleichsgeräten wenden Sie sich bitte an den Kundendienst.

Vollblutmessungen im OPTI CCA-TS2 mit B-Lac-Kassette im Vergleich zu anderen Blutgas-Messgeräten (hausinterne Messungen)

Vollblutproben mehrerer Probanden wurden mit Gasmischungen mit unterschiedlichem CO_2 -Gehalt tonometriert, um ein breites Spektrum an p CO_2 -Werten zu erhalten. Die Proben wurden parallel mit B-Lac-Kassetten und anderen Laborgeräten gemessen.

Korrelation

Vergleichsmethode* (Vollblut)	Steigung	Achsen- abschnitt	R ²	Sy.x	Bereich	n
OPTI CCA	1,00	2,12	0,994	3,52	13 - 196	162
Analysator B	0,96	1,75	0,986	3,34	13 - 104	153
Analysator C	1,01	-0,47	0,994	3,74	15 - 198	162

* Für weitere Informationen zu Vergleichsgeräten wenden Sie sich bitte an den Kundendienst.

Vergleich OPTI CCA-TS2 / OPTI CCA-TS - Vollblutmessungen unter Laborbedingungen

Der Methodenvergleich wurde nach den Empfehlungen der CLSI Richtlinie EP9-A2, Ausgabe 15, Nr. 19 mit Vollblutproben auf dem OPTI CCA-TS2 und dem OPTI CCA-TS durchgeführt.

Literaturhinweise

- 1. Tietz, Norbert W., Ed., *Clinical Guide to Laboratory Tests*, 2nd Ed., (Philadelphia: W.B.Saunders, Co., 1990) p. 436.
- OPTI Medical. Modellgleichung der Regressionsstatistik: [Ergebnisse des OPTI Analysators] = Steigung(m) [Ergebnisse der Vergleichsmethode] + Achsenabschnitt (b).

PO₂

Klinische Bedeutung¹

Der pO_2 -Wert im arteriellen Blut wird zur Beurteilung der Sauerstoffabsorption durch die Lungen benutzt. Werte unterhalb eines normalen arteriellen pO_2 (*arterielle Hypoxämie*) werden normalerweise durch Störungen des Lungen-, Kreislauf- oder Atemwegssystems verursacht, z.B. bronchiale Obstruktion, Gefäßstörungen, verminderte Herzfunktion, erhöhter Sauerstoffbedarf, anatomischer Herzfehler, verminderter O_2 -Gehalt der Einatmung. Im Allgemeinen haben O_2 -Werte über 100 mmHg keine wesentlichen Auswirkungen auf den Sauerstoffgehalt, da bei einer normalen Hämoglobinkonzentration zwischen 80 und 100 mmHg der pO_2 -Wert eine 97% Sauerstoffsättigung liefert.

Messprinzip

Das Messprinzip der pO_2 -Optode basiert auf Lumineszenzmessungen, wie sie zuerst in den 1930er Jahren dokumentiert², und kommerziell zur Messung von Blut-pO₂ im Jahre 1983 benutzt wurden³.

Die Beziehung zwischen Lumineszenz und pO, wird durch die Stern-Volmer-Gleichung quantifiziert,

$$I_0 / I = 1 + kP$$

welche beschreibt, wie die Fluoreszenz-Emissionsintensität "I" sich in dem Maße verringert, in dem sich der Partialdruck "P" des pO₂ erhöht. Im Gegensatz zu herkömmlichen elektrochemischen "Clark"-pO₂-Elektroden verbraucht die Sauerstoffoptode während der Messung keine Sauerstoffmoleküle.

Der pO₂-Partialdruck wird laut Daltonschem Gesetz vom lokalen Luftdruck beeinflusst. Der OPTI CCA-TS2 hat einen integrierten Drucktransducer, der den lokalen Luftdruck genau mißt und automatisch ausgleicht. Der OPTI CCA-TS2 wird im Werk auf den absoluten Luftdruck kalibriert.

Messbereich

Bereich	Auflösung (Niedrig/Hoch)	Einheiten
10 - 700	1/0,1	mmHg
1,33 - 93,31	0,1/0,01	kPa

Grenzwerte der	[•] Standardreferenzkassetten	(SRC)
----------------	--	-------

NIEDRIG	NORMAL	НОСН	Einheiten
60,0 ± 3,0	100,0 ± 3,0	170,0 ± 3,0	mmHg
8,00 ± 0,40	13,33 ± 0,40	22,66 ± 0,40	kPa

Interferenzen

Die Interferenztests wurden mit OPTI CCA Analysatoren mit einem Standard OPTI pO₂-Sensor durchgeführt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, sind die Störeinwirkungen beider Geräte identisch.

Im OPTI CCA-TS2 System sollten nur klare, farblose Qualitätskontrollmittel, wie z.B. OPTI CHECK oder OPTI CHECK PLUS Kontrollmittel verwendet werden. Gefärbte Materialien, einschließlich Ringversuchs-Testmaterialien, können eine störende Einwirkung auf die pO₂-Messung haben, oder nicht richtig eingesaugt werden.

Reproduzierbarkeit

Kontrollmittel

Die typische Präzision in der Serie (S_{wr}) und Gesamt (S_T) wurde mit 2 Serien pro Tag und 2 Replikaten pro Serie über einen Zeitraum von 20 Tagen nach der CLSI-Richtlinie EP5-A2 bestimmt. Die nachfolgende Tabelle zeigt typische Ergebnisse für 3 verschiedene Kontrollmittel-Level.

PO ₂ (mmHg)	OPTI Check Level 1	OPTI Check Level 2	OPTI Check Level 3
Tage	20	20	20
Gesamt-Durchschnitt	71,6	100,0	137,7
StdAbw. in der Serie (S _{wr})	1,3	1,4	1,4
% CV in der Serie	1,8%	1,4%	1,0%
StdAbw. Gesamt-Präzision (S_{T})	1,5	1,7	1,8
Gesamt % CV	2,1%	1,7%	1,3%

Vollblut

Die Präzision in der Serie wurde in Vollblutmessungen mit 3 verschiedenen Konzentrationen mit dem OPTI CCA-TS2 bewertet. Die folgende Tabelle zeigt Durchschnitt, Standardabweichung und Variationskoeffizient für 10 Messungen pro Level.

PO ₂ (mmHg)		Vollblut	
	Level 1	Level 2	Level 3
Durchschnitt	54,8	90,3	434,5
StdAbw.	0,5	0,5	5,1
%CV	0,97%	0,52%	1,18%
n	10	10	10

Linearität

Soweit möglich wurde die Linearität der OPTI CCA-TS2 Messungen im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität des pO₂-Sensors des OPTI CCA-TS2 wurde im Vergleich zum OPTI CCA-TS erstellt. Zur Feststellung der Korrelation wurden mit verschiedenen O₂-Gasmischungen tonometrierte Vollblutproben verwendet.

Korrelation mit anderen Methoden⁴

OPTI CCA im Vergleich zu anderen Butgasmessgeräten - Messung von Vollblut unter Laborbedingungen

Restaliquote von zur Blutgasanalyse entnommenen Blutproben wurden von traditionellen und nicht traditionellen Blutgasgerät-Benutzern in Krankenhauslabors untersucht. Das Blut wurde mit dem OPTI CCA analysiert, nach Erhalt der erforderlichen Messergebnisse der Vergleichsgeräte, die nach bestehenden Verfahren gehandhabt und überprüft wurden.

Korrelation

Vergleichsmethode* (Vollblut)	Steigung	Achsen- abschnitt	Korrelations- koeffizient	Sy.x	Bereich	n
Analysator A	0,9419	3,28	0,9875	18,27	36 - 563	103
Analysator B	1,0192	-4,13	0,9969	4,10	34 - 291	173
Analysator C	0,918 ± 0,087	8,083 ± 1,402	0,9954	8,032	29 - 407	105
Analysator D	1,041 ± 0,006	-6,244 ± 0,931	0,9969	6,379	37 - 598	174
Analysator E	0,993 ± 0,009	1,646 ± 0,893	0,9925	4,458	34 - 322	183

* Für weitere Informationen zu Vergleichsgeräten wenden Sie sich bitte an den Kundendienst.

Vergleich OPTI CCA-TS2 / OPTI CCA-TS - Vollblutmessungen unter Laborbedingungen

Der Methodenvergleich wurde nach den Empfehlungen der CLSI Richtlinie EP9-A2, Ausgabe 15, Nr. 19 mit Vollblutproben auf dem OPTI CCA-TS2 und dem OPTI CCA-TS durchgeführt.

Literaturhinweise

- Tietz, Norbert W., Ed., *Clinical Guide to Laboratory Tests*, 2nd Ed., (Philadelphia: W.B.Saunders, Co., 1990) p. 436.
- 2. Kautsky H, Quenching of Luminescence by Oxygen, Transactions Faraday Society 35, p.216, 1939
- 3. CDI, *3M Healthcare System 200 Extracorporeal Blood Gas Monitor*. See, for example, Lubbers DW, Gehrich J, Opitz N, *Fiber Optics Coupled Flourescence Sensors for Continuous Monitoring of Blood Gases in the Extracorporeal Circuit*, Life Supports Systems 4, p.94, 1986.
- OPTI Medical. Modellgleichung der Regressionsstatistik: [Ergebnisse des OPTI Analysators] = Steigung(m) [Ergebnisse der Vergleichsmethode] + Achsenabschnitt (b).

*PO*₂ (*Trockensensor - B-Lac-Kassette**)

Klinische Bedeutung¹

Der pO_2 -Wert im arteriellen Blut wird zur Beurteilung der Sauerstoffabsorption durch die Lungen benutzt. Werte unterhalb eines normalen arteriellen pO_2 (*arterielle Hypoxämie*) werden normalerweise durch Störungen des Lungen-, Kreislauf- oder Atemwegssystems verursacht (z.B. bronchiale Obstruktion, Gefäßstörungen, verminderte Herzfunktion, erhöhter Sauerstoffbedarf, anatomischer Herzfehler, verminderter O_2 -Gehalt der Einatmung). Im Allgemeinen haben O_2 -Werte über 100 mmHg keine wesentlichen Auswirkungen auf den Sauerstoffgehalt, da bei einer normalen Hämoglobinkonzentration zwischen 80 und 100 mmHg der pO_2 -Wert eine 97% Sauerstoffsättigung liefert.

Messprinzip

Das Messprinzip der pO_2 -Optode basiert auf Lumineszenzmessungen, wie sie zuerst in den 1930er Jahren dokumentiert², und kommerziell zur Messung von Blut-pO₂ im Jahre 1983 benutzt wurden³.

Die Beziehung zwischen Lumineszenz und pO, wird durch die Stern-Volmer-Gleichung quantifiziert,

 $I_0 / I = 1 + kP$

welche beschreibt, wie die Fluoreszenz-Emissionsintensität "I" sich in dem Maße verringert, in dem sich der Partialdruck "P" des pO₂ erhöht. Im Gegensatz zu herkömmlichen elektrochemischen "Clark"-pO₂-Elektroden verbraucht die Sauerstoffoptode während der Messung keine Sauerstoffmoleküle.

Der pO₂-Partialdruck wird laut Daltonschem Gesetz vom lokalen Luftdruck beeinflusst. Der OPTI CCA-TS2 hat einen integrierten Drucktransducer, der den lokalen Luftdruck genau mißt und automatisch ausgleicht. Der OPTI CCA-TS2 wird im Werk auf den absoluten Luftdruck kalibriert.

Messbereich

Bereich	Auflösung (Niedrig/Hoch)	Einheiten
10 - 700	1/0,1	mmHg
1,33 - 93,31	0,1/0,01	kPa

Grenzwerte der Standardreferenzkassetten (SRC)

NIEDRIG	NORMAL	НОСН	Einheiten
60,0 ± 3,0	100,0 ± 3,0	170,0 ± 3,0	mmHg
8,00 ± 0,40	13,33 ± 0,40	22,66 ± 0,40	kPa

^{*} B-Lac Kassetten sind zur Zeit in Deutschland nicht erhältlich.

Interferenzen

In tonometriertem Vollblut besteht eine Sensitivität gegenüber Farbstoffen mit kurzer Halbwertszeit im Körper vor der Metabolisierung durch die Leber. Bei dem Interferenztest wurde tonometriertes Vollblut mit bestimmten endogenen und exogenen Substanzen nach Angaben der CLSI Richtlinie EP7-A2 versetzt und auf Interferenzen geprüft. Hierbei wurden die folgenden exogenen Störsubstanzen quantifiziert. Diese Untersuchungen wurden mit OPTI CCA Analysatoren mit einem Standard OPTI pO₂-Sensor durchgeführt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, sind die Störeinwirkungen beider Geräte identisch.

Substanz	Konzentration	pO ₂ -Gehalt	Interferenz
Paracotamol	1.66 mM	48 mmHg	NEIN
Falacelamoi	1,00 11101	416 mmHg	NEIN
Apotul Solioul Söuro	2.22 mM	48 mmHg	NEIN
Acelyi-Salicyi-Saure	3,33 11111	416 mmHg	NEIN
Accorbinaäuro	0.22 mM	48 mmHg	NEIN
Ascorbinsaure	0,23 11111	416 mmHg	NEIN
h Hydroxy Duttoroöuro	16.02 mM	48 mmHg	NEIN
D-Hydroxy-BullerSaure	10,03 1110	416 mmHg	NEIN
Diliruhin	0.26 mM	48 mmHg	NEIN
Billiupin	0,20 11111	416 mmHg	NEIN
Indozvanin Crün	0.0065 mM	48 mmHg	NEIN
indozyanin-Grun	0,0005 1110	416 mmHg	NEIN
Zuotoin	6 41 mM	48 mmHg	NEIN
Zystein	0,4111111	416 mmHg	NEIN
	96.9 mM	48 mmHg	NEIN
Ethanor	00,0 mivi	416 mmHg NEIN	NEIN
Evono Plou	0.0104 mM	48 mmHg	31,16 mmHg
Evans-biau	0,0104 1110	416 mmHg	NEIN
Clycolsäuro	10 mM	48 mmHg	NEIN
Giycolsaule	TO THIN	416 mmHg	NEIN
Halothan	0.759 mM	48 mmHg	NEIN
Talottall	0,759 1110	416 mmHg	NEIN
lbunrofon	2.43 mM	48 mmHg	NEIN
ibupioleli	2,43 1111	416 mmHg	NEIN
Intralinid	10/	48 mmHg	NEIN
Intralipio	170	416 mmHg	NEIN
Methylenhlau	0 125 mM	48 mmHg	NEIN
Metrylenblau	0.12011111	416 mmHg	-27,62 mmHg
Natriumchlorid	20 mM	48 mmHg	NEIN
Nathumeniona	20 11111	416 mmHg	NEIN

Reproduzierbarkeit

Kontrollmittel

Die typische Präzision in der Serie (S_{wr}) und Gesamt (S_T) wurde mit 2 Serien pro Tag und 2 Replikaten pro Serie über einen Zeitraum von 20 Tagen nach der CLSI-Richtlinie EP5-A2 bestimmt. Die nachfolgende Tabelle zeigt typische Ergebnisse für 3 verschiedene Kontrollmittel-Level.

PO ₂ -Trockensensor (mmHg)	OPTI Check Level 1	OPTI Check Level 2	OPTI Check Level 3
Tage	20	20	20
Gesamt-Durchschnitt	73,5	103,5	139,1
StdAbw. in der Serie (S _{wr})	1,4	0,9	1,4
% CV in der Serie	1,8%	0,9%	1,0%
StdAbw. Gesamt-Präzision (S_{τ})	1,6	1,3	2,0
Gesamt % CV	2,2%	1,3%	1,5%

Vollblut

Die Präzision in der Serie wurde in Vollblutmessungen mit 3 verschiedenen Konzentrationen mit dem OPTI CCA-TS2 bewertet. Die folgende Tabelle zeigt Durchschnitt, Standardabweichung und Variationskoeffizient für 10 Messungen pro Level.

PO ₂ -Trockensensor (mmHg)	Vollblut		
	Level 1	Level 2	Level 3
Durchschnitt	55,9	91,8	428,7
StdAbw.	0,6	0,5	5,8
%CV	1,02%	0,57%	1,36%
n	10	10	10

Linearität

Soweit möglich wurde die Linearität der OPTI CCA-TS2 Messungen im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität des pO₂-Sensors des OPTI CCA-TS2 wurde im Vergleich zum OPTI CCA-TS erstellt. Zur Feststellung der Korrelation wurden mit verschiedenen O₂-Gasmischungen tonometrierte Vollblutproben verwendet.

Korrelation mit anderen Methoden⁴

OPTI CCA-TS im Vergleich zu anderen Butgasgeräten - Messung von Vollblut unter Laborbedingungen

Restaliquote von zur Blutgasanalyse entnommenen Blutproben wurden von traditionellen und nicht traditionellen Blutgasgerät-Benutzern in Krankenhauslabors untersucht. Das Blut wurde mit dem OPTI CCA-TS analysiert, nach Erhalt der erforderlichen Messergebnisse der Vergleichsgeräte, die nach bestehenden Verfahren gehandhabt und überprüft wurden.

Korrelation

Vergleichsmethode* (Vollblut)	Steigung	Achsen- abschnitt	R ²	Sy.x	Bereich	n
OPTI R	1,04	-2,76	0,968	8,72	27 - 288	148
Analysator A	0,97	3,73	0,992	5,24	27,0 - 423,8	110

* Für weitere Informationen zu Vergleichsgeräten wenden Sie sich bitte an den Kundendienst.

Vollblutmessungen im OPTI CCA-TS2 mit B-Lac-Kassette im Vergleich zu anderen Blutgas-Messgeräten (hausinterne Messungen)

Vollblutproben mehrerer Probanden wurden mit Gasmischungen mit unterschiedlichem O_2 -Gehalt tonometriert, um ein breites Spektrum an pO_2 -Werten zu erhalten. Die Proben wurden parallel mit B-Lac-Kassetten und anderen Laborgeräten gemessen.

Korrelation

Vergleichsmethode* (Vollblut)	Steigung	Achsen- abschnitt	R²	Sy.x	Bereich	n
OPTI CCA	0,94	4,84	0,998	9,77	19,9 - 642,8	161
Analysator B	0,95	6,32	0,992	18,25	17,0 - 635,7	161

* Für weitere Informationen zu Vergleichsgeräten wenden Sie sich bitte an den Kundendienst.

Vergleich OPTI CCA-TS2 / OPTI CCA-TS - Vollblutmessungen unter Laborbedingungen

Der Methodenvergleich wurde nach den Empfehlungen der CLSI Richtlinie EP9-A2, Ausgabe 15, Nr. 19 mit Vollblutproben auf dem OPTI CCA-TS2 und dem OPTI CCA-TS durchgeführt.

Literaturhinweise

- 1. Tietz, Norbert W., Ed., *Clinical Guide to Laboratory Tests*, 2nd Ed., (Philadelphia: W.B.Saunders, Co., 1990) p. 436.
- 2. Kautsky H, Quenching of Luminescence by Oxygen, Transactions Faraday Society 35, p.216, 1939
- 3. CDI, 3M Healthcare System 200 Extracorporeal Blood Gas Monitor. See, for example, Lubbers DW, Gehrich J, Opitz N, Fiber Optics Coupled Flourescence Sensors for Continuous Monitoring of Blood Gases in the Extracorporeal Circuit, Life Supports Systems 4, p.94, 1986.
- 4. OPTI Medical. Modellgleichung der Regressionsstatistik: [Ergebnisse des OPTI Analysators] = Steigung(m) [Ergebnisse der Vergleichsmethode] + Achsenabschnitt (b).

Natrium (Na⁺)

Klinische Bedeutung¹

Natrium ist das Hauptkation der extrazellulären Flüssigkeit. Seine Hauptfunktion im Körper ist die chemische Aufrechterhaltung des osmotischen Drucks und des Säure-Basen-Gleichgewichts und die Übertragung von Nervenimpulsen. Natrium agiert auf Zellmembranebene und erzeugt ein elektrisches Potential zwischen verschiedenen Zellmembranen, das für die Übertragung von Nervenimpulsen und die neuromuskuläre Anregung verantwortlich ist. Natrium spielt bei verschiedenen enzymkatalysierten Reaktionen als Cofaktor eine Rolle. Der Körper hat eine starke Tendenz zur Erhaltung des gesamten Basengehalts, daher treten auch unter pathologischen Bedingungen nur leichte Veränderungen auf.

Verminderte Natriumwerte, eine *Hponatriämie*, ist im Allgemeinen eher ein Zeichen übermäßiger Wasserretention, als eines niedrigen Gesamtnatriumgehalts im Körper. Ursachen für niedrige Natriumwerte sind im Allgemeinen: eine niedrige Natriumaufnahme, Natriumverlust als Folge von Durchfall und Erbrechen mit ausreichendem Wasser- und unzureichendem Salzaustausch, Missbrauch von Diuretika oder Nephropathie mit Salzverlust, osmotische Diurese, metabolische Azidose, Nebennierenrindeninsuffizienz, kongenitale adrenale Hyperplasie, Dilution als Folge von Ödembildung, Herzinsuffizienz, Leberinsuffizienz und Schilddrüsenunterfunktion.

Ursachen für erhöhte Natriumwerte, oder *Hypernatriämie*, sind wie folgt: profuses Schwitzen, bei dem der Wasserverlust den Salzverlust übersteigt, anhaltende Hyperpnoe, starker Durchfall und Erbrechen, Diabetes Insipidus oder diabetische Azidose; erhöhte Natriumretention in der Niere bei Hyperaldosteronismus, Cushing-Syndrom; unzureichende Wasseraufnahme als Folge von Koma oder hypothalamischer Erkrankungen; Dehydratation; oder übermäßige Behandlung mit Kochsalzlösung.

Der gemessene Natriumwert wird zur Diagnose oder Überwachung aller Störungen des Wasserhaushalts benutzt, bei Infusionstherapie, Durchfall, Erbrechen, Verbrennungen, Herz- und Niereninsuffizienz, zentralem oder renalem Diabetes Insipidus, endokrinen Störungen und primärer oder sekundärer Nebennierenrindeninsuffizienz oder anderen Erkrankungen mit Elektrolytstörungen.

Messprinzip

Die Natrium-Ionen-Optoden basieren auf dem Prinzip der ionenselektiven Elektrodenmessungen (ISE). Die Optoden verwenden ionenselektive Erkennungselemente (Ionophore), ähnlich derer, die in ionenselektiven Elektroden verwendet werden. Die Ionophoren sind jedoch anstatt mit Elektroden mit fluoreszierenden Farbstoffen verbunden. Diese Arten von Farbstoffen sind seit den 1970er Jahren zur Sichtbarmachung und Quantifizierung von zellulären Ionengehalten bei der Fluoreszenz-Mikroskopie und Zellzählung in Gebrauch². Mit dem Ansteigen der Ionenkonzentration binden diese Ionophore größere Mengen von Ionen und erhöhen oder reduzieren damit, je nach Ion, die Intensität der Fluoreszenz. So wie die pH-Optode benötigen auch die Ionen-Optoden keine Referenzelektrode, bei einigen zeigt sich jedoch eine geringe pH-Sensititvität, die im OPTI CCA-TS2 automatisch durch den gemessenen pH-Wert ausgeglichen wird.

Messbereich

Bereich	Auflösung (Niedrig/Hoch)	Einheiten
100 - 180	1/0,1	mmol/L

Grenz	werte der Standar	dreferenzkassette	en (SRC)	

NIEDRIG	NORMAL	НОСН	Einheiten
125,0 ± 2,0	145,0 ± 2,0	165,0 ± 2,0	mmol/L

Interferenzen

Der Na⁺-Sensor des OPTI CCA-TS2 zeigt keine messbare Interferenz durch Kaliumabweichungen im Bereich von 0,8-10 mmol/L.

Beim Na⁺-Sensor des OPTI CCA-TS2 kann eine geringfügige Interferenz durch Li⁺ auftreten.

Li⁺-Werte von 1,0, 2,5 und 6,4 mmol/l verursachen eine positive Na⁺-Abweichung von respektive 0,9, 1,2 und 1,3 mmol/l. Eine mit typischen Mengen Lithiumheparin präparierte Spritze enthält 1-4 mmol/l Lithium, was eine Na⁺-Abweichung von weniger als 1% versursacht.

Um Störeinwirkungen durch Lithium zu minimieren, sollten Spritzen mit dem niedrigst möglichen Heparingehalt verwendet werden. Folgen Sie den Anweisungen des Herstellers zur ordnungsgemäßen Handhabung der Spritze. Eine nur teilweise gefüllte Spritze kann eine übermäßige Lithiumkonzentration zur Folge haben.

Die Na⁺-Ergebnisse des OPTI CCA-TS2 beinhalten eine pH-Korrektur für alle pH-Werte. Diese Korrektur kann eine zusätzliche Ursache für eine Streuung bei Extremwerten sein.

Als Gerinnungshemmer sollten nur Heparinsalze verwendet werden. Andere Gerinnungshemmer, wie z.B. Citrat, EDTA, Oxalat und Fluorid, können ernsthafte Störeinwirkungen auf die Elektrolytsensoren haben

In tonometriertem Plasma besteht eine Sensitivität gegenüber Farbstoffen mit kurzer Halbwertszeit im Körper vor der Metabolisierung durch die Leber. Bei den Interferenztests wurden die folgenden exogenen Störsubstanzen quantifiziert. Diese Untersuchungen wurden mit OPTI CCA Analysatoren mit einem Standard OPTI Natrium-Sensor durchgeführt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, sind die Störeinwirkungen beider Geräte identisch.

Substanz	Menge	Abweichung (mmol/L)
Natrium-Fluoreszein	26 mg/dL	instabil
Indozyanin-Grün	0,5 mg/dL	-18,0
Methylen-Blau	25 mg/dL	-2,0

Im OPTI CCA-TS2 System sollten nur klare, farblose Qualitätskontrollmittel, wie z.B. OPTI CHECK oder OPTI CHECK PLUS Kontrollmittel verwendet werden. Gefärbte Materialien, einschließlich Ringversuchs-Testmaterialien, können eine störende Einwirkung auf die Natrium-Messung haben, oder nicht richtig eingesaugt werden.
Reproduzierbarkeit

Kontrollmittel

Die typische Präzision in der Serie (S_{wr}) und Gesamt (S_T) wurde mit 2 Serien pro Tag und 2 Replikaten pro Serie über einen Zeitraum von 20 Tagen nach der CLSI-Richtlinie EP5-A2 bestimmt. Die nachfolgende Tabelle zeigt typische Ergebnisse für 3 verschiedene Kontrollmittel-Level:

Na⁺ (mmol/L)	OPTI Check Level 1	OPTI Check Level 2	OPTI Check Level 3
Таде	20	20	20
Gesamt-Durchschnitt	126,1	143,7	156,5
StdAbw. in der Serie (S _{wr})	0,6	0,7	0,4
% CV in der Serie	0,4%	0,5%	0,3%
StdAbw. Gesamt-Präzision (S_{T})	0,7	0,7	0,6
Gesamt % CV	0,6%	0,5%	0,4%

Vollblut

Die Präzision in der Serie wurde in Vollblutmessungen mit 3 verschiedenen Konzentrationen mit dem OPTI CCA-TS2 bewertet. Die folgende Tabelle zeigt Durchschnitt, Standardabweichung und Variationskoeffizient für 10 Messungen pro Level.

Na⁺ (mmol/L)	Vollblut		
	Level 1	Level 2	Level 3
Durchschnitt	136,5	167,4	112,7
StdAbw.	0,4	0,2	0,4
%CV	0,26%	0,13%	0,33%
n	10	10	10

Linearität

Soweit möglich wurde die Linearität der OPTI CCA Messungen im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität der Natriumwerte wurde durch Messung gravimetrisch erstellter, auf N.I.S.T rückführbarer, wässriger Standardlösungen (Natrium _{ST}) und durch Messung von N.I.S.T. Standardreferenzmaterial 956a Elektrolyte in Humanserum (Natrium _{NIST}) erstellt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, ist die Rückverfolgbarkeit beider Geräte identisch.

Korrelation

	Steigung	Achsen- abschnitt	Korrelations- koeffizient	Sy.x	Bereich	n
Natrium _{st}	0,9788	2,456	0,99911	1,32	104 - 188	30
Natrium _{NIST}	1,0172	3,244	0,99957	0,55	121 - 161	18

Die direkte Linearität der OPTI CCA-TS2 Messungen wurde im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität des Natrium-Sensors des OPTI CCA-TS2 wurde im Vergleich zum OPTI CCA-TS erstellt. Zur Feststellung der Korrelation wurden mit Gasmischungen mittlerer Konzentration tonometrierte Vollblutproben verwendet.

Korrelation mit anderen Methoden³

OPTI CCA im Vergleich zu anderen ISE-Messgeräten - Messung von Vollblut und Serum unter Laborbedingungen

Restaliquote von zur Blutgasanalyse entnommenen Blutproben wurden von traditionellen und nicht traditionellen Messgerät-Benutzern in Krankenhauslabors untersucht. Das Blut wurde mit dem OPTI CCA analysiert, nach Erhalt der erforderlichen Messergebnisse der Vergleichsgeräte, die nach bestehenden Verfahren gehandhabt und überprüft wurden.

Korrelation

Vergleichsmethode*	Steigung	Achsen- abschnitt	Korrelations- koeffizient	Sy.x	Bereich	n
Analysator A (Vollblut)	0,6500	50,15	0,7564	2,21	126 - 149	103
Analysator B (Vollblut)	0,9313	9,34	0,9180	1,95	129 - 156	173
Analysator C (Vollblut)	1,084 ± 0,226	-14,929 ± 3,176	0,9784	1,826	128 - 174	105
Analysator D (Vollblut)	1,080 ± 0,021	-6,382 ± 2,855	0,9678	2,007	117 - 163	174
Analysator E (Serum)	0,873	15,49	0,8911	1,77	128 - 149	68
Analysator E (Serum)	1,025	-4,57	0,9376	1,57	127 - 148	102

* Für weitere Informationen zu Vergleichsgeräten wenden Sie sich bitte an den Kundendienst.

Vergleich OPTI CCA-TS2 / OPTI CCA-TS - Vollblutmessungen unter Laborbedingungen

Der Methodenvergleich wurde nach den Empfehlungen der CLSI Richtlinie EP9-A2, Ausgabe 15, Nr. 19 mit Vollblutproben auf dem OPTI CCA-TS2 und dem OPTI CCA-TS durchgeführt.

References

- 1. Tietz, Norbert W., Ed., *Clinical Guide to Laboratory Tests*, 2nd Ed., (Philadelphia: W.B.Saunders, Co., 1990) p. 436.
- 2. Tsien R, New Calcium Indicators and Buffers with High Selectivity Against Magnesium and Protons, Biochemistry 19, p.2396-2404, 1980.
- OPTI Medical. Modellgleichung der Regressionsstatistik: [Ergebnisse des OPTI Analysators] = Steigung(m) [Ergebnisse der Vergleichsmethode] + Achsenabschnitt (b).

Kalium (K⁺)

Klinische Bedeutung¹

Kalium ist das Hauptkation im intrazellulären Raum und fungiert als primärer Puffer innerhalb der Zelle. Neunzig Prozent des Kaliums befinden sich innerhalb der Zelle. Bei einer Zellbeschädigung wird Kalium ins Blut freigegeben. Kalium spielt eine wichtige Rolle bei der Nervenleitung, Muskelfunktion und trägt zur Aufrechterhaltung des Säure-Basenstatus und des osmotischen Drucks bei.

Erhöhte Kaliumwerte, *Hyperkaliämie*, treten bei den folgenden Erkrankungen auf: Oligurie, Anämie, Harnwegsobstruktion, Niereninsuffizienz als Folge von Nephritis oder Schock, metabolische oder respiratorische Azidose, renal-tubuläre Azidose mit K⁺/H⁺ -Austausch und Hämolyse des Blutes. Niedrige Kaliumwerte, *Hypokaliämie*, erfolgen durch übermäßigen Kaliumverlust bei Durchfall oder Erbrechen, bei verminderter Kaliumaufnahme, Malabsorption, schweren Verbrennungen und einer erhöhten Aldosteronausscheidung. Hohe oder niedrige Kaliumwerte können Veränderungen in der Muskelempfindlichkeit, der Atmung und der Myokardfunktion hervorrufen.

Der gemessene Kaliumwert dient zur Überwachung von Elektrolytstörungen bei der Diagnose und Behandlung von Infusionstherapie, Schock, Herz- und Kreislaufinsuffizienz, Säure-Basenstörungen, Behandlung mit Diuretika, allen Arten von Nierenerkrankungen, Durchfall, Über- und Unterfunktion der Nebennierenrinde und anderen Erkrankungen mit Elektrolytstörungen.

Messprinzip

Die Kalium-Ionen-Optoden basieren auf dem Prinzip der ionenselektiven Elektrodenmessungen (ISE). Die Optoden verwenden ionenselektive Erkennungselemente (Ionophore), ähnlich derer, die in ionenselektiven Elektroden verwendet werden. Die Ionophoren sind jedoch anstatt mit Elektroden mit fluoreszierenden Farbstoffen verbunden. Diese Arten von Farbstoffen sind seit den 1970er Jahren zur Sichtbarmachung und Quantifizierung von zellulären Ionengehalten bei der Fluoreszenz-Mikroskopie und Zellzählung in Gebrauch². Mit dem Ansteigen der Ionenkonzentration binden diese Ionophore größere Mengen von Ionen und erhöhen oder reduzieren damit, je nach Ion, die Intensität der Fluoreszenz. So wie die pH-Optode benötigen auch die Ionen-Optoden keine Referenzelektrode, bei einigen zeigt sich jedoch eine geringe pH-Sensititvität, die im OPTI CCA-TS2 automatisch durch den gemessenen pH-Wert ausgeglichen wird.

Messbereich

Bereich	Auflösung (Niedrig/Hoch)	Einheiten
0,8 - 9,99	0,1/0,01	mmol/L

Grenzwerte der Standardreferenzkassetten (SRC)

NIEDRIG	NORMAL	НОСН	Einheiten
2,5 ± 0,3	4,5 ± 0,3	7,0 ± 0,3	mmol/L

Interferenzen

Der K⁺-Sensor des OPTI CCA-TS2 zeigt keine messbare Interferenz durch Natriumabweichungen im Bereich von 100-190 mmol/l.

Die K⁺-Ergebnisse des OPTI CCA-TS2 beinhalten eine pH-Korrektur für alle pH-Werte. Diese Korrektur kann eine zusätzliche Ursache für eine Streuung bei Extremwerten sein.

Beim K⁺-Sensor des OPTI CCA-TS2 tritt bei normalen physiologischen Werten (unter 100 μ mol/l) keine wesentliche Interferenz durch Ammoniak oder Ammoniumionen auf. Bei Hyperammonämie (Plasmagehalt von 300 μ mol/l) zeigt der K⁺-Sensor eine Abweichung von + 0,4 mmol/l, bei extremer Hyperammonämie (Plasmagehalt von 3000 μ mol/l) tritt eine Abweichung von +4,4 mmol/l auf.

Als Gerinnungshemmer sollten nur Heparinsalze verwendet werden. Andere Gerinnungshemmer, wie z.B. Citrat, EDTA, Oxalat und Fluorid, können ernsthafte Störeinwirkungen auf die Elektrolytsensoren haben.

In tonometriertem Plasma besteht eine Sensitivität gegenüber Farbstoffen mit kurzer Halbwertszeit im Körper vor der Metabolisierung durch die Leber. Bei den Interferenztests wurden die folgenden exogenen Störsubstanzen quantifiziert. Diese Untersuchungen wurden mit OPTI CCA Analysatoren mit einem Standard OPTI Kalium-Sensor durchgeführt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, sind die Störeinwirkungen beider Geräte identisch.

Substanz	Menge	Abweichung (mmol/L)
Natrium-Fluoreszein	26 mg/dL	-0,7
Indozyanin-Grün	0,5 mg/dL	-0,4
Methylen-Blau	25 mg/dL	+2,4

Im OPTI CCA-TS2 System sollten nur klare, farblose Qualitätskontrollmittel, wie z.B. OPTI CHECK oder OPTI CHECK PLUS Kontrollmittel verwendet werden. Gefärbte Materialien, einschließlich Ringversuchs-Testmaterialien, können eine störende Einwirkung auf die Kalium-Messung haben, oder nicht richtig eingesaugt werden.

Reproduzierbarkeit

Kontrollmittel

Die typische Präzision in der Serie (S_{wr}) und Gesamt (S_T) wurde mit 2 Serien pro Tag und 2 Replikaten pro Serie über einen Zeitraum von 20 Tagen nach der CLSI-Richtlinie EP5-A2 bestimmt. Die nachfolgende Tabelle zeigt typische Ergebnisse für 3 verschiedene Kontrollmittel-Level.

K⁺ (mmol/L)	OPTI Check Level 1	OPTI Check Level 2	OPTI Check Level 3
Tage	20	20	20
Gesamt-Durchschnitt	2,92	4,86	5,92
StdAbw. in der Serie (S _{wr})	0,03	0,03	0,03
% CV in der Serie	0,9%	0,6%	0,5%
StdAbw. Gesamt-Präzision (S_{τ})	0,03	0,03	0,04
Gesamt % CV	1,0%	0,6%	0,6%

Vollblut

Die Präzision in der Serie wurde in Vollblutmessungen mit 3 verschiedenen Konzentrationen mit dem OPTI CCA-TS2 bewertet. Die folgende Tabelle zeigt Durchschnitt, Standardabweichung und Variationskoeffizient für 10 Messungen pro Level.

K⁺ (mmol/L)	Vollblut		
	Level 1	Level 2	Level 3
Durchschnitt	3,65	8,15	2,07
StdAbw.	0,01	0,02	0,05
%CV	0,38%	0,26%	2,49%
n	10	10	10

Linearität

Soweit möglich wurde die Linearität der OPTI CCA Messungen im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität der Kaliumwerte wurde durch Messung gravimetrisch erstellter, auf N.I.S.T rückführbarer, wässriger Standardlösungen (Kalium_{ST}) und durch Messung von N.I.S.T. Standardreferenzmaterial 956a Elektrolyte in Humanserum (Kalium_{NIST}) erstellt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, ist die Rückverfolgbarkeit beider Geräte identisch.

Korrelation

	Steigung	Achsen- abschnitt	Korrelations- koeffizient	Sy.x	Bereich	n
Kalium _{st}	0,9964	0,116	0,99893	0,14	1,0 - 9,0	30
Kalium _{NIST}	0,9723	0,135	0,99956	0,05	2,0 - 6,0	18

Die direkte Linearität der OPTI CCA-TS2 Messungen wurde im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität des Kalium-Sensors des OPTI CCA-TS2 wurde im Vergleich zum OPTI CCA-TS erstellt. Zur Feststellung der Korrelation wurden mit Gasmischungen mittlerer Konzentration tonometrierte Vollblutproben verwendet.

Korrelation mit anderen Methoden³

OPTI CCA im Vergleich zu anderen ISE-Messgeräten - Messung von Vollblut und Serum unter Laborbedingungen

Restaliquote von zur Blutgasanalyse entnommenen Blutproben wurden von traditionellen und nicht traditionellen Messgerät-Benutzern in Krankenhauslabors untersucht. Das Blut wurde mit dem OPTI CCA analysiert, nach Erhalt der erforderlichen Messergebnisse der Vergleichsgeräte, die nach bestehenden Verfahren gehandhabt und überprüft wurden.

Korrelation

Vergleichsmethode*	Steigung	Achsen- abschnitt	Korrelations- koeffizient	Sy.x	Bereich	n
Analysator A (Vollblut)	1,0816	-0,138	0,9857	0,13	2,1 - 6,4	103
Analysator B (Vollblut)	1,0225	-0,008	0,9673	0,15	2,5 - 6,0	173
Analysator C (Vollblut)	1,021 ± 0,019	-0,087 ± 0,077	0,9830	0,197	2,3 - 9,4	105
Analysator D (Vollblut)	1,050 ± 0,126	$0,062 \pm 0,055$	0,9879	0,18	2,2 - 9,4	174
Analysator E (Serum)	1,084	-0,315	0,9855	0,181	2,9 - 7,5	68
Analysator F (Serum)	1,126	-0,397	0,9784	0,108	3,0 - 5,4	102

* Für weitere Informationen zu Vergleichsgeräten wenden Sie sich bitte an den Kundendienst.

Vergleich OPTI CCA-TS2 / OPTI CCA-TS - Vollblutmessungen unter Laborbedingungen

Der Methodenvergleich wurde nach den Empfehlungen der CLSI Richtlinie EP9-A2, Ausgabe 15, Nr. 19 mit Vollblutproben auf dem OPTI CCA-TS2 und dem OPTI CCA-TS durchgeführt.

Literaturhinweise

- 1. Tietz, Norbert W., Ed., *Clinical Guide to Laboratory Tests*, 2nd Ed., (Philadelphia: W.B.Saunders, Co., 1990) p. 436.
- 2. Tsien R, New Calcium Indicators and Buffers with High Selectivity Against Magnesium and Protons, Biochemistry 19, p.2396-2404, 1980.
- OPTI Medical. Modellgleichung der Regressionsstatistik: [Ergebnisse des OPTI Analysators] = Steigung(m) [Ergebnisse der Vergleichsmethode] + Achsenabschnitt (b).

Ionisiertes Calcium (Ca⁺⁺)

Klinische Bedeutung¹

50% Prozent des im Blut vorkommenden Calciums tritt in der Form von freien Calciumionen auf, 40% sind an Proteine, hauptsächlich Albumin, gebunden und 10% an Anionen wie z. B. Bikarbonat, Zitrat, Phosphat und Laktat. Der Körper benutzt jedoch nur ionisiertes Calcium zu lebensnotwendigen Vorgängen wie z. B. Muskelkontraktion, Herzfunktion, Übertragung von Nervenimpulsen und Blutgerinnung. Der OPTI CCA-TS2 misst den ionisierten Anteil des Gesamtcalciums. Bei bestimmten Erkrankungen wie z. B. Pankreatitis und Hyperparathyreoidismus ist das ionisierte Calcium besser zur Diagnose geeignet als das Gesamtcalcium.

Erhöhte Calciumwerte, *Hyperkalziämie*, sind Anzeichen einer erhöhten Darmabsorption, eines Verlusts von Knochensubstanz (Osteolyse), einer verminderten Nierenausscheidung, Schilddrüsenüberfunktion und Addison-Krankheit. Sie kommen auch bei verschiedenen Malignitäten vor, und Calciummessungen können als biochemische Marker dienen. Trotz der etwas höheren Empfindlichkeit des ionisierten Calciums, sind Messungen von ionisiertem Calcium oder von Gesamtcalcium im Allgemeinen gleichwertig bei der Erkennung von okkulten Malignitäten. Eine Hyperkalziämie tritt häufig bei Patienten im kritischen Zustand auf, bei Störungen des Säure-Basenhaushalts und Protein- und Albuminverlusten, wobei hier die Überwachung des Calciumstatuses mit Hilfe des ionisierten Calciums einen klaren Vorteil bietet.

Niedrige Calciumwerte, *Hypokalziämie,* sind Anzeichen einer verminderten Darmabsorption, einer erhöhten Nierenausscheidung, erhöhter Calciumablagerungen im Knochen, einer erhöhten Bindung an Proteine bei erhöhtem pH oder einer erhöhten Anbindung an Zitrat und einer Schilddrüsenunterfunktion.

Patienten mit Nierenleiden auf Grund glomerulärer Störungen weisen häufig veränderte Calcium-Phosphat-, Albumin-, Magnesium- und pH-Konzentrationen auf. Da sich bei diesen Zuständen das ionisierte Calcium unabhängig vom Calcium-Gesamtgehalt verändert, wird die Messung des ionisierten Calciums bevorzugt zur Überwachung des Calciumstatuses bei Nierenerkrankungen angewandt².

Ionisiertes Calcium spielt eine wichtige Rolle bei der Diagnose oder Überwachung von Hypertension, Parathyreoidismus, Nierenerkrankungen, Unterernährung, Nierensteinen, multiplem Myelom und Diabetes mellitus.

Das ionisierte Calcium wird entweder als das aktuelle ionisierte Calcium im Bezug auf den aktuellen pH-Wert des Patienten angegeben oder als normalisiertes ionisiertes Calcium bei einem standardisierten pH-Wert von 7,40. Da die Bindung von Calcium durch Protein und kleine Anionen vom pH-Wert beeinflusst wird, sollten Blutproben unter Berücksichtigung des pH-Werts des Patienten gemessen werden.

Messprinzip

Die Calcium-Ionen-Optoden basieren auf dem Prinzip der ionenselektiven Elektrodenmessungen (ISE). Die Optoden verwenden ionenselektive Erkennungselemente (Ionophore), ähnlich derer, die in ionenselektiven Elektroden verwendet werden. Die Ionophoren sind jedoch anstatt mit Elektroden mit fluoreszierenden Farbstoffen verbunden. Diese Arten von Farbstoffen sind seit den 1970er Jahren zur Sichtbarmachung und Quantifizierung von zellulären Ionengehalten bei der Fluoreszenz-Mikroskopie und Zellzählung in Gebrauch³. Mit dem Ansteigen der Ionenkonzentration binden diese Ionophore größere Mengen von Ionen und erhöhen oder reduzieren damit, je nach Ion, die Intensität der Fluoreszenz. So wie die pH-Optode benötigen auch die Ionen-Optoden keine Referenzelektrode, bei einigen zeigt sich jedoch eine geringe pH-Sensititvität, die im OPTI CCA-TS2 automatisch durch den gemessenen pH-Wert ausgeglichen wird.

Messbereich

Bereich	Auflösung (Niedrig/Hoch)	Einheiten
0,2 - 3,0	0,01	mmol/L

Grenzwerte der Standardreferenzkassetten (SRC)

NIEDRIG	NORMAL	НОСН	Einheiten
1,8 ± 0,1	1,1 ± 0,1	0,7 ± 0,1	mmol/L

Interferenzen

Beim Ca⁺⁺-Sensor des OPTI CCA-TS2 tritt eine Interferenz durch Bisulfat und Phenylessigsäure auf.

Als Gerinnungshemmer sollten nur Heparinsalze verwendet werden. Andere Gerinnungshemmer, wie z.B. Citrat, EDTA, Oxalat und Fluorid, können ernsthafte Störeinwirkungen auf die Elektrolytsensoren haben. In tonometriertem Plasma besteht eine Sensitivität gegenüber Farbstoffen mit kurzer Halbwertszeit im Körper vor der Metabolisierung durch die Leber. Bei den Interferenztests wurden die folgenden exogenen Störsubstanzen quantifiziert. Diese Untersuchungen wurden mit OPTI CCA Analysatoren mit einem Standard OPTI Calcium-Sensor durchgeführt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, sind die Störeinwirkungen beider Geräte identisch.

Substanz	Menge	Abweichung (mmol/L)
Natrium-Fluoreszein	26 mg/dL	instabil
Indozyanin-Grün	0,5 mg/dL	+0,1
Methylen-Blau	25 mg/dL	instabil

Im OPTI CCA-TS2 System sollten nur klare, farblose Qualitätskontrollmittel, wie z.B. OPTI CHECK oder OPTI CHECK PLUS Kontrollmittel verwendet werden. Gefärbte Materialien, einschließlich Ringversuchs-Testmaterialien, können eine störende Einwirkung auf die Calcium-Messung haben, oder nicht richtig eingesaugt werden.

Reproduzierbarkeit

Kontrollmittel

Die typische Präzision in der Serie (S_{wr}) und Gesamt (S_T) wurde mit 2 Serien pro Tag und 2 Replikaten pro Serie über einen Zeitraum von 20 Tagen nach der CLSI-Richtlinie EP5-A2 bestimmt. Die nachfolgende Tabelle zeigt typische Ergebnisse für 3 verschiedene Kontrollmittel-Level:

Ca ⁺⁺ (mmol/L)	OPTI Check Level 1	OPTI Check Level 2	OPTI Check Level 3
Таде	20	20	20
Gesamt-Durchschnitt	1,57	1,27	0,79
StdAbw. in der Serie (S _{wr})	0,01	0,01	0,01
% CV in der Serie	0,9%	0,7%	0,9%
StdAbw. Gesamt-Präzision (S_{T})	0,02	0,01	0,01
Gesamt % CV	1,5%	1,0%	1,5%

Vollblut

Die Präzision in der Serie wurde in Vollblutmessungen mit 3 verschiedenen Konzentrationen mit dem OPTI CCA-TS2 bewertet. Die folgende Tabelle zeigt Durchschnitt, Standardabweichung und Variationskoeffizient für 10 Messungen pro Level.

Ca⁺⁺ (mmol/L)	Vollblut			
	Level 1	Level 2	Level 3	
Durchschnitt	1,21	2,58	0,82	
StdAbw.	0,004	0,010	0,005	
%CV	0,35%	0,40%	0,59%	
n	10	10	10	

Linearität

Soweit möglich wurde die Linearität der OPTI CCA Messungen im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität der Calciumwerte wurde durch Messung gravimetrisch erstellter, auf N.I.S.T rückführbarer, wässriger Standardlösungen (Calcium_{ST}) und durch Messung von N.I.S.T. Standardreferenzmaterial 956a Elektrolyte in Humanserum (Calcium_{NIST}) erstellt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, ist die Rückverfolgbarkeit beider Geräte identisch.

Korrelation

	Steigung	Achsen- abschnitt	Korrelations- koeffizient	Sy.x	Bereich	n
ionisiertes Calcium $_{\rm ST}$	1,0022	-0,0025	0,99983	0,017	0,2 - 3,0	24
ionisiertes Calcium _{NIST}	0,9938	0,0081	0,99843	0,016	1,07 - 1,71	12

Die direkte Linearität der OPTI CCA-TS2 Messungen wurde im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität des Calcium-Sensors des OPTI CCA-TS2 wurde im Vergleich zum OPTI CCA-TS erstellt. Zur Feststellung der Korrelation wurden mit Gasmischungen mittlerer Konzentration tonometrierte Vollblutproben verwendet.

Korrelation mit anderen Methoden⁴

OPTI CCA im Vergleich zu anderen ISE-Messgeräten - Messung von Vollblut unter Laborbedingungen

Restaliquote von zur Blutgasanalyse entnommenen Blutproben wurden von traditionellen und nicht traditionellen Messgerät-Benutzern in Krankenhauslabors untersucht. Das Blut wurde mit dem OPTI CCA analysiert, nach Erhalt der erforderlichen Messergebnisse der Vergleichsgeräte, die nach bestehenden Verfahren gehandhabt und überprüft wurden.

Korrelation

Vergleichsmethode* (Vollblut)	Steigung	Achsen- abschnitt	Korrelations- koeffizient	Sy.x	Bereich	n
Analysator A	0,8732	-0,064	0,8392	0,07	0,68 - 1,34	103
Analysator B	0,9548	-0,024	0,9453	0,04	0,94 - 1,67	101

* Für weitere Informationen zu Vergleichsgeräten wenden Sie sich bitte an den Kundendienst.

Vergleich OPTI CCA-TS2 / OPTI CCA-TS - Vollblutmessungen unter Laborbedingungen

Der Methodenvergleich wurde nach den Empfehlungen der CLSI Richtlinie EP9-A2, Ausgabe 15, Nr. 19 mit Vollblutproben auf dem OPTI CCA-TS2 und dem OPTI CCA-TS durchgeführt.

Literaturhinweise

- 1. Tietz, Norbert W., Ed., *Clinical Guide to Laboratory Tests*, 2nd Ed., (Philadelphia: W.B.Saunders, Co., 1990) p. 436.
- 2. Burritt MF, Pierides AM, Offord KP: *Comparative studies of total and ionized serum calcium values in normal subjects and in patients with renal disorders*. Mayo Clinic proc. 55:606, 1980.
- 3. Tsien R, New Calcium Indicators and Buffers with High Selectivity Against Magnesium and Protons, Biochemistry 19, p.2396-2404, 1980.
- OPTI Medical. Modellgleichung der Regressionsstatistik: [Ergebnisse des OPTI Analysators] = Steigung(m) [Ergebnisse der Vergleichsmethode] + Achsenabschnitt (b).

Chlorid (Cl⁻)

Klinische Bedeutung¹

Chlorid ist ein Anion, das hauptsächlich im extrazellulären Raum vorkommt. Chlorid dient zur Aufrechterhaltung der zellulären Integrität durch seinen Einfluss auf den osmotischen Druck und spielt eine wichtige Rolle in der Überwachung des Säure-Basen-Gleichgewichts und Wasserhaushalts. Bei einer metabolischen Azidose erhöht sich die Chloridkonzentration im umgekehrten Verhältnis zum Abfall der Bikarbonatkonzentration.

Verminderte Chloridwerte sind oft eine Folge von schwerem Erbrechen, schwerem Durchfall, Colitis ulcerosa, Pylorusobstruktion, schweren Verbrennungen, Hitzekollaps, diabetischer Azidose, Addison-Krankheit, Fieber und akuten Infektionen, wie z. B. Lungenentzündung.

Erhöhte Werte sind eine Folge von Dehydratation, Cushing-Sydrom, Hyperventilation, Eklampsie, Anämie und kardialer Dekompensation.

Messprinzip

Die Chlorid-Ionen-Optoden basieren auf dem Prinzip der ionenselektiven Elektrodenmessungen (ISE). Die Optoden verwenden ionenselektive Erkennungselemente (Ionophore), ähnlich derer, die in ionenselektiven Elektroden verwendet werden. Die Ionophoren sind jedoch anstatt mit Elektroden mit fluoreszierenden Farbstoffen verbunden. Diese Arten von Farbstoffen sind seit den 1970er Jahren zur Sichtbarmachung und Quantifizierung von zellulären Ionengehalten bei der Fluoreszenz-Mikroskopie und Zellzählung in Gebrauch². Mit dem Ansteigen der Ionenkonzentration binden diese Ionophore größere Mengen von Ionen und erhöhen oder reduzieren damit, je nach Ion, die Intensität der Fluoreszenz. So wie die pH-Optode benötigen auch die Ionen-Optoden keine Referenzelektrode, bei einigen zeigt sich jedoch eine geringe pH-Sensititvität, die im OPTI CCA-TS2 automatisch durch den gemessenen pH-Wert ausgeglichen wird.

Messbereich

Bereich	Auflösung (Niedrig/Hoch)	Einheiten
50 - 160	1/0,1	mmol/L

Grenzwerte der Standardreferenzkassetten (SRC)

NIEDRIG	NORMAL	НОСН	Einheiten
80,0 ± 2	105,0 ± 2	130,0 ± 2	mmol/L

Interferenzen

Beim Cl-Sensor des OPTI CCA-TS2 tritt eine signifikante (größer als 2:1) positive Interferenz durch Bromid, Iodid, Interlipid und Nitrit auf. Geringfügige Störeinwirkungen durch Phenylessigsäure, Salicylat und Thiocyanat wurden beobachtet. Die Interferenztests wurden mit OPTI CCA Analysatoren mit einem Standard OPTI Chlorid-Sensor durchgeführt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, sind die Störeinwirkungen beider Geräte identisch.

Als Gerinnungshemmer sollten nur Heparinsalze verwendet werden. Andere Gerinnungshemmer, wie z.B. Citrat, EDTA, Oxalat und Fluorid, können ernsthafte Störeinwirkungen auf die Elektrolytsensoren haben.

Im OPTI CCA-TS2 System sollten nur klare, farblose Qualitätskontrollmittel, wie z.B. OPTI CHECK oder OPTI CHECK PLUS Kontrollmittel verwendet werden. Gefärbte Materialien, einschließlich Ringversuchs-Testmaterialien, können eine störende Einwirkung auf die Chlorid-Messung haben, oder nicht richtig eingesaugt werden.

Reproduzierbarkeit

Kontrollmittel

Die typische Präzision in der Serie (S_{wr}) und Gesamt (S_T) wurde mit 2 Serien pro Tag und 2 Replikaten pro Serie über einen Zeitraum von 10 Tagen nach der CLSI-Richtlinie EP5-A2 bestimmt. Die nachfolgende Tabelle zeigt typische Ergebnisse für 3 verschiedene Kontrollmittel-Level.

Cl ⁻ (mmol/L)	OPTI Check Level 1	OPTI Check Level 2	OPTI Check Level 3
Tage	10	10	10
Gesamt-Durchschnitt	95,3	107,1	115,6
StdAbw. in der Serie (S_{wr})	0,6	1,4	0,5
% CV in der Serie	0,7%	1,3%	0,4%
StdAbw. Gesamt-Präzision (S_{T})	0,7	1,4	0,6
Gesamt % CV	0,8%	1,3%	0,5%

Vollblut

Die Präzision in der Serie wurde in Vollblutmessungen mit 3 verschiedenen Konzentrationen mit dem OPTI CCA-TS2 bewertet. Die folgende Tabelle zeigt Durchschnitt, Standardabweichung und Variationskoeffizient für 10 Messungen pro Level.

CI [.] (mmol/L)	Vollblut			
	Level 1	Level 2	Level 3	
Durchschnitt	104,1	141,3	57,5	
StdAbw.	0,3	1,0	0,3	
%CV	0,28%	0,73%	0,51%	
n	10	10	10	

Linearität

Soweit möglich wurde die Linearität der OPTI CCA Messungen im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität der Chloridwerte wurde durch Messung gravimetrisch erstellter, auf N.I.S.T rückführbarer, wässriger Standardlösungen (Chlorid_{ST}) erstellt. Die Linearität der Chloridwerte in Serum wurde durch Chloridometrie (Chlorid_{CL}) bestimmt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, ist die Rückverfolgbarkeit beider Geräte identisch.

Korrelation

	Steigung	Achsen- abschnitt	Korrelations- koeffizient	Sy.x	Bereich	n
Chlorid _{st}	1,0076	-0,56	0,99984	0,68	58 - 160	15
Chlorid _{cL}	1,0064	-2,44	0,99823	1,66	74 - 142	16

Die direkte Linearität der OPTI CCA-TS2 Messungen wurde im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität des Chlorid-Sensors des OPTI CCA-TS2 wurde im Vergleich zum OPTI CCA-TS erstellt. Zur Feststellung der Korrelation wurden mit Gasmischungen mittlerer Konzentration tonometrierte Vollblutproben verwendet.

Korrelation mit anderen Methoden³

OPTI CCA im Vergleich zu anderen ISE-Messgeräten - Messung von Vollblut unter Laborbedingungen

Restaliquote von zur Blutgasanalyse entnommenen Blutproben wurden von traditionellen und nicht traditionellen Messgerät-Benutzern in Krankenhauslabors untersucht. Das Blut wurde mit dem OPTI CCA analysiert, nach Erhalt der erforderlichen Messergebnisse der Vergleichsgeräte, die nach bestehenden Verfahren gehandhabt und überprüft wurden.

Korrelation

Vergleichsmethode* (Vollblut)	Steigung	Achsen- abschnitt	Korrelations- koeffizient	Sy.x	Bereich	n
Analysator A	0,9965	0,95	0,9246	1,96	92 - 117	173

* Für weitere Informationen zu Vergleichsgeräten wenden Sie sich bitte an den Kundendienst.

Vergleich OPTI CCA-TS2 / OPTI CCA-TS - Vollblutmessungen unter Laborbedingungen

Der Methodenvergleich wurde nach den Empfehlungen der CLSI Richtlinie EP9-A2, Ausgabe 15, Nr. 19 mit Vollblutproben auf dem OPTI CCA-TS2 und dem OPTI CCA-TS durchgeführt.

Literaturhinweise

- 1. Tietz, Norbert W., Ed., *Clinical Guide to Laboratory Tests*, 2nd Ed., (Philadelphia: W.B.Saunders, Co., 1990) p. 436.
- 2. Tsien R, New Calcium Indicators and Buffers with High Selectivity Against Magnesium and Protons, Biochemistry 19, p.2396-2404, 1980.
- OPTI Medical. Modellgleichung der Regressionsstatistik: [Ergebnisse des OPTI Analysators] = Steigung(m) [Ergebnisse der Vergleichsmethode] + Achsenabschnitt (b).

Glucose (Glu)

Klinische Bedeutung¹

Glucose ist die Hauptenergiequelle des Körpers und vor allem des Hirngewebes und der Erythrozyten. Der Blutzuckerwert spielt daher eine zentrale Rolle im Energiestoffwechsel und seine Erhaltung ist lebenswichtig. Die Glucosekonzentration im Blut wird bestimmt durch das Gleichgewicht zwischen Glucoseverbrauch und Glucoseaufnahme durch die Nahrung oder Synthese im Körper. Änderungen dieses Gleichgewichts können entweder eine Hyperglykämie (erhöhte Blutzuckerwerte) oder Hypoglykämie (niedere Blutzuckerwerte) hervorrufen. Beide Zustände haben schwere Folgen für die Gesundheit und erfordern medizinische Behandlung, weshalb die Messung von Glucose einer der am häufigsten angeforderten Labortests ist. Die Behandlung einer Hyperglykämie kann ohne sorgfältige Kontrolle eine Hypoglykämie des Patienten zur Folge haben.

Abnormale Werte

Hyperglykämie kann eine Vielzahl von Ursachen haben, die in zwei Hauptkategorien eingeteilt werden können: Hyperglykämie als Folge von Diabetes mellitus und Hyperglykämie als Folge nicht-diabetischer Ursachen. Diabetes mellitus ist ein Zeichen einer chronischen Hyperglykämie, die entweder auf einem totalen Insulinmangel oder einer verminderten Gewebereaktion auf Insulin, oder beidem beruht. Es handelt sich hierbei um eine weitverbreitete Krankheit, die nach strikten Kriterien durch Messung des Blutzuckerwertes diagnostiziert wird. Nicht diabetische Ursachen der Hyperglykämie sind u. a., *postprandiale Hyperglykämie* (tritt sofort nach einer kohlehydrathaltigen Mahlzeit ein), *Hyperglycaemie factitia* (Blutentnahme nach Glucose-Infusion), *medikamentös verursachte Hyperglykämie* (verursacht eine Unempfindlichkeit des Gewebes gegenüber Insulin), *nicht pankreatische endokrine Krankheit* (übermässige Produktion von Anti-Insulin-Hormonen), *Pankreaserkrankungen* (sekundärer Diabetes mellitus) und *Stress* (physisch und psychisch bedingt, mit übermäßiger Ausscheidung von Kortisol und Katecholaminen).

Hypoglykämie ist eine akute Erkrankung mit einer Vielzahl charakteristischer Anzeichen und Symptome, die von einer biochemischen Hypoglykämie begleitet werden, und kann durch die Verabreichung von Glucose behandelt werden. Die Ursachen der Hypoglykämie können in drei Gruppen eingeteilt werden: Medikamente/Toxine, reaktive Hypoglykämie und Fastenhypoglykämie. Hypoglykämie als Folge von übermäßigen Mengen bestimmter *Medikamente oder Toxine* kann durch Insulin verursacht werden (Insulinüberdosis ist die häufigste Ursache einer Hypoglykämie), durch orale Hypoglykämika oder Sulfonylharnstoffe, Ethanol und andere Medikamente, wie z. B. Salicylat und Propanalol.

Reaktive Hypoglykämie tritt innerhalb von 5 Stunden nach einer kohlenhydrathaltigen Mahlzeit in anderweitig normalen Patienten, in Patienten mit nicht-insulinabhängigem Diabetes mellitus und bei Patienten nach Magenoperationen auf.

Eine *Fastenhypoglykämie* kann als Folge von Insulinomen, nicht-pankreatischen Tumoren, endokrinen Erkrankungen, Leberinsuffizienz, Sepsis, Niereninsuffizienz oder Autoimmunerkrankungen auftreten.

Messprinzip

Das Messprinzip der Glucose-Optode basiert auf der enzymatischen Oxidation der Glucose.

Glucose + O_2 \longrightarrow Gluconsäure + H_2O_2 Glucose-Oxidase

Der Glucosesensor ist ein von einer Enzymschicht umgebener Sauerstoffsensor. Wenn die Glucose in der Probe mit dem Sensor in Kontakt kommt, wird der im Sensor vorhandene Sauerstoff durch den Oxidationsprozess der Glucose verbraucht. Diese Sauerstoffabnahme wird nach dem für die pO_2 -Optode beschriebenen Prinzip (Lumineszenzlöschung) festgestellt. Der Glucoseanteil wird proportional zum Sauerstoffverbrauch festgestellt.

Messbereich

Bereich	Auflösung (Niedrig/Hoch)	Einheiten
30 - 400 (70 - 400 für Proben mit pO ₂ -	0,1/0,1	mg/dL
Genail Zwischen 401-700 mmHg)		
1,7 - 22,2	0,01/0,01	mmol/L

Grenzwerte der Standardreferenzkassetten (SRC)

NIEDRIG	NORMAL	НОСН	Einheiten
40,0 ± 4,0	110,0 ± 4,0	300,0 ± 4,0	mg/dL
2,2 ± 0,22	6,1 ± 0,22	16,65 ± 0,22	mmol/L

Interferenzen

Beim OPTI CCA-TS2 Glucose-Sensor tritt eine Interferenz durch pO_2 -Konzentrationen über 700 mmHg auf. Der Glu-Sensor korrigiert pO_2 -Werte bis zu 700 mmHg. Bei pO_2 -Werten > 700 mmHg werden die Glucosewerte unterdrückt. Die Interferenztests wurden mit OPTI CCA Analysatoren mit einem Standard OPTI Glucose-Sensor durchgeführt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, sind die Störeinwirkungen beider Geräte identisch.

Als Gerinnungshemmer sollten nur Heparinsalze verwendet werden. Andere Gerinnungshemmer, wie z.B. Citrat, EDTA, Oxalat und Fluorid, können ernsthafte Störeinwirkungen auf die Glucose-Sensoren haben.

Im OPTI CCA-TS2 System sollten nur klare, farblose Qualitätskontrollmittel, wie z.B. OPTI CHECK oder OPTI CHECK PLUS Kontrollmittel verwendet werden. Gefärbte Materialien, einschließlich Ringversuchs-Testmaterialien, können eine störende Einwirkung auf die Glucose-Messung haben, oder nicht richtig eingesaugt werden.

Reproduzierbarkeit

Kontrollmittel

Die typische Präzision in der Serie (S_{wr}) und Gesamt (S_T) wurde mit 2 Serien pro Tag und 2 Replikaten pro Serie über einen Zeitraum von 10 Tagen nach der CLSI-Richtlinie EP5-A2 bestimmt. Die nachfolgende Tabelle zeigt typische Ergebnisse für 3 verschiedene Kontrollmittel-Level:

Glucose (mg/dL)	OPTI Check Level 1	OPTI Check Level 2	OPTI Check Level 3
Tage	10	10	10
Gesamt-Durchschnitt	40,5	95,7	316,2
StdAbw. in der Serie (S_{wr})	1,6	3,5	7,5
% CV in der Serie	3,9%	3,6%	2,4%
StdAbw. Gesamt-Präzision (S_{T})	2,4	4,4	9,4
Gesamt % CV	5,9%	4,6%	3,0%

Vollblut

Die Präzision in der Serie wurde in Vollblutmessungen mit 3 verschiedenen Konzentrationen mit dem OPTI CCA-TS2 bewertet. Die folgende Tabelle zeigt Durchschnitt, Standardabweichung und Variationskoeffizient für 10 Messungen pro Level.

Glucose (mg/dL)	Vollblut				
	Level 1	Level 3			
Durchschnitt	82,7	166,1	34,6		
StdAbw.	3,8	8,2	2,4		
%CV	4,65%	4,91%	6,94%		
n	10	10	10		

Linearität

Soweit möglich wurde die Linearität der OPTI CCA Messungen im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität der Glucosewerte wurde durch Messung gravimetrisch erstellter, auf N.I.S.T rückführbarer, wässriger Standardlösungen (Glucose _{ST}) erstellt. Die Linearität der Glucosewerte in Serum wurde durch Messung von N.I.S.T. Standardreferenzmaterial 965 Glucose in gefrorenem Humanserum (Glucose _{NIST}) erstellt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, ist die Rückverfolgbarkeit beider Geräte identisch.

Korrelation

	Steigung	Achsen- abschnitt	Korrelations- koeffizient	Sy.x	Bereich	n
Glucose _{st} (mg/dL)	0,9874	3,26	0,9959	7,57	30 - 400	126
Glucose _{st} (mmol/L)	0,9874	0,181	0,9959	0,420	1,6 - 23,0	126
Glucose _{NIST} (mg/dL)	1,0256	-7,79	0,9912	8,13	97 - 306	36
Glucose _{NIST} (mmol/L)	1,0256	-0,432	0,9912	0,451	5,4 - 17,0	36

Die direkte Linearität der OPTI CCA-TS2 Messungen wurde im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität des Glucose-Sensors des OPTI CCA-TS2 wurde im Vergleich zum OPTI CCA-TS erstellt. Zur Feststellung der Korrelation wurden mit Gasmischungen mittlerer Konzentration tonometrierte Vollblutproben verwendet.

Korrelation mit anderen Methoden²

OPTI CCA im Vergleich zu anderen Glucose-Messgeräten - Messung von Vollblut, Plasma und Serum unter Laborbedingungen

Restaliquote von zur Blutgasanalyse entnommenen Blutproben wurden von traditionellen und nicht traditionellen Messgerät-Benutzern in Krankenhauslabors untersucht. Das Blut wurde mit dem OPTI CCA analysiert, nach Erhalt der erforderlichen Messergebnisse der Vergleichsgeräte, die nach bestehenden Verfahren gehandhabt und überprüft wurden.

Korrelation

Vergleichsmethode*	Steigung	Achsen- abschnitt	Korrelations- koeffizient	Sy.x	Bereich	n
Analysator A (Vollblut) mg/dL	1,0081	5,16	0,9735	11,81	27 - 328	106
Analysator B (Plasma) mg/dL	0,9986	-2,34	0,9933	8,500	49 - 398	167
OPTI CCA mg/dL (Vollblut/Plasma) mmol/L	1,058 1,058	2,36 0,13	0,9700 0,9700	21,600 1,200	37 - 395 2,1 - 21,9	103 103
Analysator C (Serum) mg/dL	0,9500	5,73	0,9784	10,51	78 - 294	68
Analysator D (Serum) mg/dL	0,9910	3,99	0,9772	10,74	36 - 344	102
Analysator E (Vollblut) mg/dL	0,9776	-1,29	0,9864	9,74	86 - 340	85

* Für weitere Informationen zu Vergleichsgeräten wenden Sie sich bitte an den Kundendienst.

Vergleich OPTI CCA-TS2 / OPTI CCA-TS - Vollblutmessungen unter Laborbedingungen

Der Methodenvergleich wurde nach den Empfehlungen der CLSI Richtlinie EP9-A2, Ausgabe 15, Nr. 19 mit Vollblutproben auf dem OPTI CCA-TS2 und dem OPTI CCA-TS durchgeführt.

Literaturhinweise

- 1. Tietz, Norbert W., Ed., *Clinical Guide to Laboratory Tests*, 2nd Ed., (Philadelphia: W.B.Saunders, Co., 1990) p. 436.
- OPTI Medical. Modellgleichung der Regressionsstatistik: [Ergebnisse des OPTI Analysators] = Steigung(m) [Ergebnisse der Vergleichsmethode] + Achsenabschnitt (b).

Harnstoff-Stickstoff (BUN/Urea)

Klinische Bedeutung¹

Harnstoff ist ein Nebenprodukt der Leber, das durch den Abbau von Aminosäuren entsteht. Diese werden zu Ammoniak, einem Giftstoff, desaminiert oder transaminiert. Die Entgiftung von Ammoniak findet im Harnstoffzyklus statt, wobei sich zwei Moleküle Ammoniak mit einem Molekül Kohlendioxyd zur Bildung von Harnstoff verbinden. Bei einer Ernährung mit durchschnittlichem Eiweißgehalt werden im Urin pro Tag 12 bis 20 g Harnstoff-Stickstoff ausgeschieden.²

Abnormale Werte

Der Harnstoffwert im Blut stellt das Gleichgewicht zwischen Harnstoffproduktion und -Abbau dar.

Ursachen erhöhter Harnstoffwerte im Blut (> 7,1 mmol/L Harnstoff, 20 mg/dl BUN).

Erhöhte Harnstoffwerte können die Folge einer erhöhten Harnstoffproduktion oder eines verminderten Harnstoffabbaus sein. Eine erhöhte Harnstoffproduktion kann durch eine hohe Eiweißaufnahme bedingt sein, durch Magen-Darmblutungen mit Absorption von Aminosäuren und Peptiden oder durch einen erhöhten Gewebeabbau aufgrund schwerwiegender Krankheiten, Verletzungen oder bestimmter Medikamente, wie z.B. Tetrazykline oder Glukokortikoide bedingt sein. Eine verminderte Ausscheidung wird mit einer niedrigen glomerulären Filtrationsrate (GFR) assoziiert. Hierfür gibt es mehrere Ursachen, die als prärenale Urämie aufgrund von Dehydrierung klassifiziert werden können, als renale Urämie aufgrund eines primären Nierenversagens oder postrenale Urämie aufgrund einer Ostruktion der Harnwege.

Ursachen verminderter Harnstoffwerte im Blut (< 2,1 mmol/L Harnstoff, 6 mg/dL BUN).

Verminderte Harnstoffwerte treten weniger häufig als erhöhte Werte auf und sind durch eine verminderte Harnstoffproduktion oder eine erhöhte Harnstoffausscheidung bedingt. Eine verminderte Harnstoffproduktion kann als Folge einer Ernährung mit niedrigem Eiweißgehalt, schwerem Leberversagen und, nur bei Säuglingen, angeborenen Defekten im Harnstoffzyklus auftreten. Eine erhöhte Harnstoffausscheidung kann als Folge einer übermäßigen Gabe von intravenösen Flüssigkeiten, unzureichender ADH-Absonderung oder während der Schwangerschaft auftreten.

Messprinzip

Das Messprinzip der BUN/Urea-Optode basiert auf der enzymatischen Hydrolyse des Harnstoffs durch das Enzym Urease.

Urea +
$$H_2O$$
 + 2 H^+ \longrightarrow 2 NH_4^+ + CO_2

Urease

Die Ammonium-Ionen werden von einem ammonium-selektiven optischen Fluoreszenz-Sensor (Optode) gemessen. Der Harnstoffgehalt verhält sich proprotional zur Ammonium-Konzentration.

Messbereich

Bereich	Auflösung (Niedrig/Hoch)	Einheiten
2,8 - 112,0	0,1/0,1	mg/dL
1 - 40	0,01/0,01	mmol/L

Grenzwerte der Standardreferenzkassetten (SRC)

NIEDRIG	NORMAL	НОСН	Einheiten
5,6 ± 1,4	28,0 ± 1,4	70,0 ± 1,4	mg/dL
2,0 ± 0,5	10,0 ± 0,5	25,0 ± 0,5	mmol/L

Interferenzen

Beim BUN/Urea-Sensor des OPTI CCA-TS2 tritt bei normalen physiologischen Konzentrationen (unter 100 µmol/L) und bei Hyperammonämie (Plasmagehalt von 300 µmol/L) keine Störeinwirkung durch Ammoniak- oder Ammoniumionen auf. Bei extremer Hyperammonämie (Plasmagehalt von 3000µmol/L), zeigt der BUN/Urea-Sensor des OPTI CCA-TS2 eine Abweichung von +4,8 mg/dL BUN (1,7 mmol/L Urea). Die Interferenztests wurden mit OPTI CCA Analysatoren mit einem Standard OPTI BUN-Sensor durchgeführt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, sind die Störeinwirkungen beider Geräte identisch.

Als Gerinnungshemmer sollten nur Heparinsalze verwendet werden. Andere Gerinnungshemmer, wie z.B. Citrat, EDTA, Oxalat und Fluorid, können ernsthafte Störeinwirkungen auf die BUN-Sensoren haben.

Im OPTI CCA-TS2 System sollten nur klare, farblose Qualitätskontrollmittel, wie z.B. OPTI CHECK oder OPTI CHECK PLUS Kontrollmittel verwendet werden. Gefärbte Materialien, einschließlich Ringversuchs-Testmaterialien, können eine störende Einwirkung auf die BUN-Messung haben, oder nicht richtig eingesaugt werden.

Reproduzierbarkeit

Kontrollmittel

Die typische Präzision in der Serie (S_{wr}) und Gesamt (S_T) wurde mit 2 Serien pro Tag und 2 Replikaten pro Serie über einen Zeitraum von 10 Tagen nach der CLSI-Richtlinie EP5-A2 bestimmt. Die nachfolgende Tabelle zeigt typische Ergebnisse für 3 verschiedene Kontrollmittel-Level.

BUN (mg/dL)	OPTI Check Level 1	OPTI Check Level 2	OPTI Check Level 3
Tage	10	10	10
Gesamt-Durchschnitt	74,1	19,3	5,9
StdAbw. in der Serie (S _{wr})	3,0	0,6	0,1
% CV in der Serie	4,0%	3,2%	1,9%
StdAbw. Gesamt-Präzision (S_{T})	3,5	0,7	0,2
Gesamt % CV	4,7%	3,7%	3,2%

Vollblut

Die Präzision in der Serie wurde in Vollblutmessungen mit 3 verschiedenen Konzentrationen mit dem OPTI CCA-TS2 bewertet. Die folgende Tabelle zeigt Durchschnitt, Standardabweichung und Variationskoeffizient für 10 Messungen pro Level.

BUN (mg/dL)	Vollblut			
	Level 1	Level 3		
Durchschnitt	6,03	26,61	85,59	
StdAbw.	0,03	0,25	0,97	
%CV	0,53%	0,93%	1,13%	
n	10	10	10	

Linearität

Soweit möglich wurde die Linearität der OPTI CCA Messungen im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität der BUN/Urea-Werte in Serum wurde durch Messung von N.I.S.T Standardreferenzmaterial 909b BUN in gefrorenem Humanserum (BUN_{NIST}) erstellt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, ist die Rückverfolgbarkeit beider Geräte identisch.

Korrelation

	Steigung	Achsen- abschnitt	Korrelations- koeffizient	Sy.x	Bereich	n
BUN _{NIST}	1,0046	1,58	0,991	1,75	16 - 86	6

Die direkte Linearität der OPTI CCA-TS2 Messungen wurde im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität des BUN-Sensors des OPTI CCA-TS2 wurde im Vergleich zum OPTI CCA-TS erstellt. Zur Feststellung der Korrelation wurden mit Gasmischungen mittlerer Konzentration tonometrierte Vollblutproben verwendet.

Korrelation mit anderen Methoden³

OPTI CCA-TS im Vergleich zu anderen Harnstoff-Messgeräten - Messung von Vollblut und Serum unter Laborbedingungen

Restaliquote von zur Blutgasanalyse entnommenen Blutproben wurden von traditionellen und nicht traditionellen Messgerät-Benutzern in Krankenhauslabors untersucht. Das Blut wurde mit dem OPTI CCA-TS analysiert, nach Erhalt der erforderlichen Messergebnisse der Vergleichsgeräte, die nach bestehenden Verfahren gehandhabt und überprüft wurden.

Korrelation

Vergleichsmethode*	Steigung	Achsen- abschnitt	Korrelations- koeffizient	Sy.x	Bereich	n
Analysator A (Plasma) mg/dL	0,940	2,97	0,9975	1,046	8 - 89	68
Analysator B (Plasma) mg/dL	1,058	-3,04	0,9988	1,12	4 - 106	102
Analysator C (Serum) mg/dL	0,993	0,44	0,9953	1,00	6 - 65	47
Analysator D (Serum) mg/dL	0,971	-0,27	0,9822	0,98	5 - 42	50
Analysator E (Vollblut) mg/dL	1,069	-0,62	0,9928	1,04	3,1 - 48	113

* Für weitere Informationen zu Vergleichsgeräten wenden Sie sich bitte an den Kundendienst.

Vergleich OPTI CCA-TS2 / OPTI CCA-TS - Vollblutmessungen unter Laborbedingungen

Der Methodenvergleich wurde nach den Empfehlungen der CLSI Richtlinie EP9-A2, Ausgabe 15, Nr. 19 mit Vollblutproben auf dem OPTI CCA-TS2 und dem OPTI CCA-TS durchgeführt.

Literaturhinweise

- 1. Tietz, Norbert W., Ed., *Clinical Guide to Laboratory Tests*, 2nd Ed., (Philadelphia: W.B.Saunders, Co., 1990) p. 436.
- 2. Tietz, Burtis C.(Ed.), *Textbook of Clinical Chemistry and Molecular Diagnostics*, 4th Ed., (Elsevier Saunders, 2006), p. 802.
- 3. OPTI Medical. Modellgleichung der Regressionsstatistik: [Ergebnisse des OPTI Analysators] = Steigung(m) [Ergebnisse der Vergleichsmethode] + Achsenabschnitt (b).

Laktat (B-Lac-Kassette*)

Klinische Bedeutung¹

Milchsäure ist ein Zwischenprodukt des Kohlenhydratstoffwechsels. Die Laktatkonzentration im Blut wird hauptsächlich von der Laktatprodutionsrate der weißen Skelettmuskulatur, des Hirns, des Nierenmarks, der Erythrozyten und der Laktat-Stoffwechselrate der Leber und Nieren beeinflusst. Ein hoher Laktatgehalt verbunden mit einem pH-Wert unter 7,25 kann ein Anzeichen einer Laktatazidose sein.

Man unterscheidet zwei Arten der Laktatazidose:

 hypoxische Laktatazidose als Folge einer verringerten Sauerstoffabgabe an das Gewebe
metabolische Laktatazidose verursacht durch Krankheit, Medikamente/Giftstoffe oder angeborene Stoffwechselstörungen.

Hypoxie ist die häufigste Ursache einer Laktatazidose und kann ein Anzeichen von Sepsis, Schock, Hypovolämie, Mangeldurchblutung und Insuffizienz der linken Herzkammer sein. Man unterscheidet verschiedene Arten der Hypoxie:

- Anämische Hypoxie: verminderter Sauerstofftransport im Blut entweder durch eine Verminderung des Gesamthämoglobins oder durch eine Veränderung der Hämoglobinkomponenten.
- **Stagnierende Hypoxie**: verminderter Sauerstofftransport im Blut durch reduzierten Blutfluss wie z.B. bei Herzversagen.
- Histotoxische Hypoxie: Sauerstoffmangel im Gewebe
- Hypoxämische Hypoxie: Sauerstoffmangel mit Folge der Unterversorgung von Organen.
- Ischämische Hypoxie: Einschränkung der Gewebedurchblutung.

Messprinzip¹

Der Laktat-Biosensor enthält das Enzym Laktatoxidase zur selektiven Katalysierung der Reaktion zwischen Laktat und Sauerstoff, wie in der nachstehenden Reaktionsfolge veranschaulicht wird.

L-Laktat + $O_2 \rightarrow$ (Laktatoxidase) \rightarrow Pyruvat + H_2O_2

Der Sauerstoffverbrauch wird mit einem optischen Sensor photochemisch gemessen. Die Sauerstoffverbrauchsrate ist proportional zur Laktatkonzentration in der Probe.

Messbereich

Bereich	Auflösung (Niedrig/Hoch)	Einheiten
0,3 - 17,5	0,01/0,01	mmol/L
2,7 - 157,7	0,1/0,1	mg/dL

^{*} B-Lac-Kassetten sind zur Zeit in Deutschland nicht erhältllich.

NIEDRIG	NORMAL	НОСН	Einheiten
1,00 ± 0,30	2,50 ± 0,50	5,00 ± 0,50	mmol/L
9,0 ± 2,7	22,5 ± 4,5	45,0 ± 4,5	mg/dL

Grenzwerte der Standardreferenzkassetten (SRC)

Interferenzen

Die Reaktion des Laktatsensors im Vollblut wird durch die Menge des in der Probe vorhandenen Hämoglobins beeinflusst. Der Algorithmus, der verwendet wird, um die Fluoreszenzdaten des Laktat-Sensors zu analysieren, wendet zum Ausgleich eine Korrektur auf der Basis des gemessenen Gesamt-Hämoglobinwerts (tHb) an. Somit zeigt sich bei den mit B-Lac-Kassetten gemessenen Laktatwerten keine wesentliche Interferenz durch tHb im Bereich von 5 g/dl bis 20 g/dl. Bei Proben mit tHb-Werten über 20 mg/dl wird der Laktatwert nicht angegeben.

Bei dem Interferenztest wurde tonometriertes Vollblut mit bestimmten endogenen und exogenen Substanzen nach Angaben der CLSI Richtlinie EP7-A2 versetzt und auf Interferenzen geprüft. Hierbei wurden die folgenden exogenen Störsubstanzen quantifiziert. Diese Untersuchungen wurden mit OPTI CCA-TS Analysatoren mit einem Standard OPTI Laktat-Sensor durchgeführt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA-TS, sind die Störeinwirkungen beider Geräte identisch.

Substanz	Konzentration	d max	Laktatgehalt mM	Interferenz
Paracetamol	1,66 mM	0,2mM	2	NEIN
			5	NEIN
Acetyl-Salicyl-Säure	3,33 mM	0,2mM	2	NEIN
			5	NEIN
Ascorbinsäure	0,23 mM	0,2mM	2	NEIN
			5	NEIN
B-Hydroxy-Buttersäure	16,03 mM	0,2mM	2	NEIN
			5	NEIN
Bilirubin	0,26 mM	0,2mM	2	NEIN
			5	NEIN
Indozyanin-Grün	0,0065 mM	0,2mM	2	0,4 mM
			5	1,1 mM
Zystein	6,41 mM	0,2mM	2	NEIN
			5	NEIN
Ethanol	86,8 mM	0,2mM	2	NEIN
			5	NEIN
Evans-Blau	0,0104 mM	0,2mM	2	NEIN
			5	NEIN
Substanz	Konzentration	d max	Laktatgehalt mM	Interferenz
---------------------	---------------	----------	--------------------	-------------
Chucoloëuro	10 mM			1,4 mM
Giycolsaure	TOTHIM	0,211101	5	1,0 mM
Holothan	0.750 mM	0.2mM	2	NEIN
Παιοιπαιτ	0,7591110	0,211101	5	NEIN
lhuprofon	2.42 mM	0.2mM	2	NEIN
ibupioien	2,43 1110	0,211101	5	NEIN
Introlinid	10/	0.2mM	2	NEIN
initialipio	1 %	0,211101	5	NEIN
Mathylandau	0.125 mM	0.2mM	2	0,6 mM
Metryleriblau	0,1251110	0,211101	5	1,1 mM
Netwisses ships and	20 mM	0.2mM	2	NEIN
INAUIUITICHIOHU	20 11111	U,ZIIIM	5	NEIN

Reproduzierbarkeit

Kontrollmittel

Die typische Präzision in der Serie (S_{wr}) und Gesamt (S_T) wurde mit 2 Serien pro Tag und 2 Replikaten pro Serie über einen Zeitraum von 20 Tagen nach der CLSI-Richtlinie EP5-A2 bestimmt. Die nachfolgende Tabelle zeigt typische Ergebnisse für 3 verschiedene Kontrollmittel-Level:

Laktat (mmol/L)	OPTI Check Level 1	OPTI Check Level 2	OPTI Check Level 3
Таде	20	20	20
Gesamt-Durchschnitt	1,02	2,50	4,59
StdAbw. in der Serie (S _{wr})	0,06	0,11	0,18
% CV in der Serie	5,6%	4,2%	4,0%
StdAbw. Gesamt-Präzision (S_{T})	0,07	0,11	0,22
Gesamt % CV	6,4%	4,5%	4,8%

Vollblut

Die Präzision in der Serie wurde in Vollblutmessungen mit 3 verschiedenen Konzentrationen mit dem OPTI CCA-TS2 bewertet. Auf Grund der raschen Veränderung des Laktats im Vollblut wurde gleichzeitig auf 10 verschiedenen Geräten eine Wiederholmessung durchgeführt. Die folgende Tabelle zeigt Durchschnitt, Standardabweichung und Variationskoeffizient für 10 Messungen pro Level.

Laktat (mmol/L)	Vollblut			
	Level 1	Level 2	Level 3	
Durchschnitt	3,85	1,13	6,17	
StdAbw.	0,14	0,05	0,20	
%CV	3,76%	4,42%	3,16%	
n	10	10	10	

Linearität

Soweit möglich wurde die Linearität der OPTI CCA-TS Messungen im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität für die Laktatmessung wurde im Vergleich zu der gravimetrischen Laktat-Konzentration in einer Verdünnungsfolge wässriger Pufferlösungen nach der CLSI- Richtlinie EP6-A bestimmt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, ist die Linearität beider Geräte identisch.

Korrelation

	Steigung	Achsen- abschnitt	Korrelations- koeffizient	Sy.x	Bereich	n
Laktat (gravimetrisch)	0,93	-0,08	0,993	0,47	0,3 - 17,5	107

Die Linearität wurde auch im Vergleich zum I-STAT Analysator bestimmt. Zum Abdecken des Messbereichs wurden mit Milchsäure versetzte Vollblutproben verwendet.

Korrelation

	Steigung	Achsen- abschnitt	Korrelations- koeffizient	Sy.x	Bereich	n
Laktat (vgl. mit i-STAT)	1,00	0,00	0,978	0,67	1,06 - 16,91	405

Die direkte Linearität der OPTI CCA-TS2 Messungen wurde im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität des Laktat-Sensors des OPTI CCA-TS2 wurde im Vergleich zum OPTI CCA-TS erstellt. Zur Feststellung der Korrelation wurden mit Gasmischungen mittlerer Konzentration tonometrierte Vollblutproben verwendet.

Korrelation mit anderen Methoden²

OPTI CCA-TS im Vergleich zu anderen Laktat-Messgeräten - Messung von Vollblut unter Laborbedingungen

Restaliquote von zur Blutgasanalyse entnommenen Blutproben wurden von traditionellen und nicht traditionellen Messgerät-Benutzern in Krankenhauslabors untersucht. Das Blut wurde mit dem OPTI CCA-TS analysiert, nach Erhalt der erforderlichen Messergebnisse der Vergleichsgeräte, die nach bestehenden Verfahren gehandhabt und überprüft wurden.

Korrelation

Vergleichsmethode* (Vollblut)	Steigung	Achsen- abschnitt	R ²	Sy.x	Bereich	n
Analysator A	0,96	-0,01	0,944	0,64	0,78 - 13,96	175
Analysator B	1,18	-0,54	0,952	0,55	0,40 - 11,3	49

* Für weitere Informationen zu Vergleichsgeräten wenden Sie sich bitte an den Kundendienst.

Vergleich OPTI CCA-TS2 / OPTI CCA-TS - Vollblutmessungen unter Laborbedingungen

Der Methodenvergleich wurde nach den Empfehlungen der CLSI Richtlinie EP9-A2, Ausgabe 15, Nr. 19 mit Vollblutproben auf dem OPTI CCA-TS2 und dem OPTI CCA-TS durchgeführt.

Literaturhinweise

- 1. Tietz. (2006). *Clinical Chemistry and Molecular Diagnostics* (4th Edition ed.). (C. A. Burtis, E. R. Ashwood, & D. E. Burns, Eds.) St. Louis, Missouri: Elsevier Saunders.
- 2. OPTI Medical. Modellgleichung der Regressionsstatistik: [Ergebnisse des OPTI Analysators] = Steigung(m) [Ergebnisse der Vergleichsmethode] + Achsenabschnitt (b).

Gesamthämoglobinkonzentration (ctHb) und Hämoglobinsauerstoffsättigung (SO₂%)

Klinische Bedeutung¹

Gesamthämoglobinkonzentration (ctHb)

Hämoglobin ist der Hauptbestandteil der roten Blutkörperchen. Seine Aufgabe besteht darin, den Sauerstofftransport des Körpers zu gewährleisten, wobei ein einziges Gramm Hämoglobin bis zu 1,39 ml Sauerstoff transportieren kann. Die Sauerstoffbindung im Blut ist direkt proportional zur Hämoglobinkonzentration und nicht zur Anzahl der roten Blutkörperchen (RBC), da einige rote Blutkörper mehr Hämoglobin enthalten können als andere.

Hämoglobin spielt auch eine wichtige Rolle als Puffer im extrazellulären Raum. Eine Verminderung der Hämoglobinwerte kann als Folge einer verminderten Hämoglobinkonzentration in den roten Blutkörperchen oder als Folge einer verminderten Anzahl von Blutkörperchen mit einer normalen Hämoglobinkonzentration auftreten.

Verminderte Werte treten auf bei Anämie, Hyperthyreoidismus, schweren Blutungen und hämolytischen Reaktionen nach Transfusionen mit inkompatiblem Blut, Reaktionen auf chemische, infektiöse und physische Wirkstoffe, sowie bei einer Anzahl systemischer Erkrankungen. Erhöhte Werte sind präsent bei Hämokonzentration des Bluts, bei chronisch obstruktiven Lungenerkrankungen und kongestiver Herzinsuffizienz.

Die Gesamthämoglobinkonzentration liefert wichtige Informationen in Notfallsituationen, wenn sie nicht isoliert, sondern in Verbindung mit anderen wichtigen Labordaten interpretiert wird.

Die Gesamthämoglobinkonzentration wird zur Feststellung von Erkrankungen, die als Folge von Anämie auftreten, zur Einschätzung der Schwere der Anämie, zur Überwachung des Behandlungsverlaufs und zur Bestimmung von Polyzythämie benutzt.

Hämoglobinsauerstoffsättigung (SO₂%)

Hämoglobin wird zu Oxyhämoglobin (O_2 Hb), wenn jede einzelne Hämgruppe des Hämoglobinmoleküls je ein Sauerstoffmolekül bindet. Der Konzentrationsanteil des Oxyhämoglobins an der gesamt vorliegenden Hämoglobinkonzentration wird als Hämoglobinsauerstoffsättigung (SO_2 %) bezeichnet. Der größte Teil (ca. 98%) des Blutsauerstoffgehalts ist der an Hämoglobin gebundene Sauerstoff. Der Referenzbereich für arterielles Blut eines gesunden Erwachsenen liegt bei 94 bis 98%². Verminderte SO_2 -Werte unterhalb des für die Sauerstoffsättigung des Gewebes kritischen Werts stellen eine schwere klinische Situation dar. Niedrige Sauerstoffsättigungswerte können durch die gleichen Faktoren verursacht werden, die auch für eine arterielle *Hypoxämie* verantwortlich sind.

Eine niedrige Oxyhämoglobin-Fraktion des Gesamthämoglobins (FO₂Hb) kann die folgenden Ursachen haben: ungewöhnlich hohe Anteile an nicht funktionellem Hämoglobin, hohe Konzentrationen von Desoxyhämoglobin, chemisch modifiziertes Hämoglobin oder Faktoren, die die Sauerstoffaffinität des Hämoglobins beeinflussen, darunter: Temperatur, pH, pCO₂, 2,3-DPG-Konzentration und Art des Hämoglobins.³

Messprinzip

Die Messung des **Gesamthämoglobins (tHb)** und der **Sauerstoffsättigung (SO**₂) basiert auf dem Prinzip der optischen Reflexion. Rotlicht und Infrarotlicht wird auf drei Wellenlängen auf nicht hämolysiertes Vollblut innerhalb eines genau definierten Teils der Kassette über der O₂-Optode ausgestrahlt. Die Photonen werden teilweise absorbiert und von den Erythrozyten in einem Verhältnis proportional zum Hämoglobingehalt reflektiert. Bei einem niedrigen Hämoglobingehalt treffen die nicht absorbierten Photonen auf den rosa Überzug der O₂-Optode auf und werden ein zweites Mal durch das Blut reflektiert. Ein Teil des reflektierten Lichts verlässt die Kassette am oberen Ende und wird von einem Detektor im Gerät gemessen. Die Infrarot-Wellenlängen eignen sich zur Hämoglobinmessung, weil sie weitgehend unabhängig vom SO₂ sind, d.h., die Absorption der vorherrschenden Form von Erwachsenen- und Neugeborenen-Hämoglobin ist im Wellenlängenbereich von 750 – 850 nm ähnlich.

Die Wellenlänge des Rotlichts wird zur Messung von SO₂ benutzt, weil sie von Desoxyhämoglobin viel stärker absorbiert wird, als von anderen Hämoglobinen, und wird in der Nähe des isosbestischen Punktes für Oxy- und Carboxyhämoglobin gewählt. Die Anfälligkeit zur Rollenbildung der Erythrozyten wird durch die Erhaltung einer hohen Scherkraft direkt vor der Messung minimiert (siehe Interferenzen).

Messbereich

tHb

Bereich	Auflösung (Niedrig/Hoch)	Einheiten
5 - 25	0,1/0,1	g/dL

SO₂

Bereich	Auflösung (Niedrig/Hoch)	Einheiten
60 - 100	1/0,1	%

Grenzwerte der Standardreferenzkassetten (SRC)

tHb

NIEDRIG	NORMAL	НОСН	Einheiten
20,0 ± 1,5	14,0 ± 1,5	8,0 ± 1,5	g/dL

SO₂

NIEDRIG	NORMAL	НОСН	Einheiten
70,0 ± 2,0	90,0 ± 2,0	98,0 ± 2,0	%

Interferenzen

In tonometriertem Plasma besteht eine Sensitivität gegenüber Farbstoffen mit kurzer Halbwertszeit im Körper vor der Metabolisierung durch die Leber. Bei den Interferenztests wurden die folgenden exogenen Störsubstanzen quantifiziert. Diese Untersuchungen wurden mit OPTI CCA Analysatoren mit einer Standard OPTI-Kassette durchgeführt. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, sind die Störeinwirkungen beider Geräte identisch.

EXOGEN

Substanz	Menge	tHb-Abweichung (g/dL)	SO ₂ -Abweichung (%)
Indozyanin-Grün	0,5 mg/dL	+4,7	+4%
Evans-Blau	5,0mg/dL	<1,0	-17%
Methylen-Blau	25 mg/dL	+3,0	-37%

ENDOGEN

Substanz	Menge	tHb-Abweichung (g/dL)	SO ₂ -Abweichung (%)
Carboxyhämoglobin	10%	-2,0	<2%
Carboxyhämoglobin	20%	-3,3	<2%
Methämoglobin	13%	+1,7	-7%

Schnell sedimentierende Blutproben sollten gründlich gemischt und sofort in die OPTI Kassette eingegeben werden (vgl. Abschnitt 5.1.7 "Probenhandhabung und Lagerung"), um genaue tHb-Messungen sicherzustellen. Nach Eintreten der Sedimentation können falsche hohe oder niedrige tHb-Werte auftreten.

Fetales Hämoglobin aus Nabelschnurblutextrakten wurde getestet und zeigte keine Sensitivität bei tHbund SO₂-Messungen.

Im OPTI CCA-TS2 System sollten nur klare, farblose Qualitätskontrollmittel, wie z.B. OPTI CHECK oder OPTI CHECK PLUS Kontrollmittel verwendet werden. Gefärbte Materialien, einschließlich Ringversuchs-Testmaterialien, können eine störende Einwirkung auf die tHb/SO₂-Messung haben, oder nicht richtig eingesaugt werden.

Reproduzierbarkeit

Kontrollmittel

Die typische Präzision in der Serie (S_{wr}) und Gesamt (S_T) wurde mit 2 Serien pro Tag und 2 Replikaten pro Serie über einen Zeitraum von 20 Tagen nach der CLSI-Richtlinie EP5-A2 bestimmt. Die nachfolgende Tabelle zeigt typische Ergebnisse für 3 verschiedene Kontrollmittel-Level:

tHb (g/dL)	OPTI Check Level 1	OPTI Check Level 2	OPTI Check Level 3
Tage	20	20	20
Gesamt-Durchschnitt	20,7	14,0	8,9
StdAbw. in der Serie (S_{wr})	0,1	0,1	0,1
% CV in der Serie	0,3%	0,4%	1,2%
StdAbw. Gesamt-Präzision (S_{T})	0,2	0,1	0,2
Gesamt % CV	0,9%	0,8%	2,5%

SO ₂ (%)	OPTI Check Level 1	OPTI Check Level 2	OPTI Check Level 3
Tage	20	20	20
Gesamt-Durchschnitt	81,2	89,8	96,4
StdAbw. in der Serie (S_{wr})	0,1	0,3	0,4
% CV in der Serie	0,2%	0,3%	0,4%
StdAbw. Gesamt-Präzision (S_{τ})	0,5	0,5	0,7
Gesamt % CV	0,6%	0,6%	0,8%

Vollblut

Die Präzision in der Serie wurde in Vollblutmessungen mit 3 verschiedenen Konzentrationen mit dem OPTI CCA-TS2 bewertet. Die folgende Tabelle zeigt Durchschnitt, Standardabweichung und Variationskoeffizient für 10 Messungen pro Level.

tHb (g/dL)	Vollblut			
	Level 1	Level 2	Level 3	
Durchschnitt	7,5	17,7	12,1	
StdAbw.	0,2	0,2	0,2	
%CV	2,59%	1,34%	1,86%	
n	10	10	10	

SO ₂ (%)	Vollblut			
	Level 1	Level 2	Level 3	
Durchschnitt	79,5	96,8	99,9	
StdAbw.	0,2	0,1	0,0	
%CV	0,21%	0,05%	0,00%	
n	10	10	10	

Linearität

Soweit möglich wurde die Linearität der OPTI CCA-TS Messungen im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität des Gesamthämoglobingehalts wurde durch photometrische Bestimmung von Zyanmethämoglobin erstellt.⁵ Für die Messung der Sauerstoffsättigung gibt es keine Standardmethode. Da der OPTI CCA-TS2 das gleiche Messprinzip und den gleichen Sensor verwendet wie der OPTI CCA, ist die Rückverfolgbarkeit beider Geräte identisch.

Korrelation

	Steigung	Achsen- abschnitt	Korrelations- koeffizient	Sy.x	Bereich	n
tHb (g/dL)	0,984	0,165	0,995	0,59	5,2 - 22,0	84

Soweit möglich wurde die Linearität der OPTI CCA-TS2 Messungen im Vergleich zu Referenzmaterialien oder -Methoden bestimmt. Die Linearität des tHb-Sensors des OPTI CCA-TS2 wurde im Vergleich zum OPTI CCA-TS erstellt. Zur Feststellung der Korrelation wurden Vollblutproben mit verschiedenen Mengen roter Blutkörperchen verwendet, die mit einer mittleren Konzentration von O_2/CO_2 -Gas tonometriert waren.

Die Linearität der SO₂-Messung des OPTI CCA-TS2 wurde im Vergleich zum OPTI CCA-TS erstellt. Zur Feststellung der Korrelation wurden mit verschiedenen O₂-Gasmischungen tonometrierte Vollblutproben verwendet.

Korrelation mit anderen Methoden⁴

OPTI CCA im Vergleich zu anderen Hämoglobin/Sauerstoffmessgeräten - Messung von Vollblut unter Laborbedingungen

Restaliquote von zur Blutgasanalyse entnommenen Blutproben wurden von traditionellen und nicht traditionellen Messgerät-Benutzern in Krankenhauslabors untersucht. Das Blut wurde mit dem OPTI CCA analysiert, nach Erhalt der erforderlichen Messergebnisse der Vergleichsgeräte, die nach bestehenden Verfahren gehandhabt und überprüft wurden.

Korrelation tHb

Vergleichsmethode* (Vollblut)	Steigung	Achsen- abschnitt	Korrelations- koeffizient	Sy.x	Bereich	n
Analysator A	1,0284	-0,375	0,9778	0,47	6,0 - 16,1	103
Analysator B	0,9877	0,14	0,9715	0,37	6,9 - 14,8	173
Analysator C	1,077 ± 0,020	-0,284 ± 0,227	0,9650	0,74	5,4 - 17,4	215

Korrelation SO₂

Vergleichsmethode* (Vollblut)	Steigung	Achsen- abschnitt	Korrelations- koeffizient	Sy.x	Bereich	n
Analysator A	0,8678	12,99	0,9738	0,73	73 - 100	103
Analysator B	0,7972	18,81	0,9064	1,81	64 - 100	173
Analysator C	1,021 ± 0,016	-2,920 ± 1,522	0,9752	1,47	62 - 100	215

* Für weitere Informationen zu Vergleichsgeräten wenden Sie sich bitte an den Kundendienst.

Vergleich OPTI CCA-TS2 / OPTI CCA-TS - Vollblutmessungen unter Laborbedingungen

Der Methodenvergleich wurde nach den Empfehlungen der CLSI Richtlinie EP9-A2, Ausgabe 15, Nr. 19 mit Vollblutproben auf dem OPTI CCA-TS2 und dem OPTI CCA-TS durchgeführt.

tHb

Literaturhinweise

- 1. Tietz, Norbert W., Ed., *Clinical Guide to Laboratory Tests*, 2nd Ed., (Philadelphia: W.B.Saunders, Co., 1990) p. 436.
- 2. Tietz; Burtis C, et al (Eds.), *Textbook of Clinical Chemistry and Molecular Diagnostics*, 4th Ed., (Elsevier Saunders, 2006) pps. 2252-2302.
- 3. Tietz; Burtis C, et al (Eds.), *Textbook of Clinical Chemistry and Molecular Diagnostics*, 4th Ed., (Elsevier Saunders, 2006) p. 1004.
- OPTI Medical. Modellgleichung der Regressionsstatistik: [Ergebnisse des OPTI Analysators] = Steigung(m) [Ergebnisse der Vergleichsmethode] + Achsenabschnitt (b).
- 5. NCCLS. *Reference and Selected Procedures for the Quantitative Determination of Hemoglobin in Blood; Approved Standard 3rd Edition;* NCCLS document H15-A3. NCCLS, Wayne, PA, 2000.

	A-I
Messwerte	A-1
Luftdruck	A-1
Betriebshöhe	A-1
Verschmutzungsgrad	A-1
Betriebsparameter	A-2
Rechenwerte	A-5
Datenmanagement	A-6
Stromversorgung Netzteil	A-6
DC-Versorgung für Gerät	A-6
Überspannungskategorie	A-6
Maße und Gewicht	A-6
Klassifikationen	A-7
Temperatur	A-7
Einheiten der Mess- und Eingabewerte der Berechnungen	A-7
Umrechnungstabelle	A-8
Gleichungen	A-8
ANHANG B - MENÜSTRUKTUR	B-1
ANHANG C - WARTUNGSTABELLE	C-1
ANHANG D - PROTOKOLLFORMATE	D-1
Allgemeines Messprotokoll	D-1
SRC-Messprotokoll	D-1 D-2
SRC-Statistikprotokoll	D-3
QC-Messprotokoll	D-4
QC-Statistikprotokoll	D-5
Wartungsprotokoll	D-6
U-r	
Fehlerprotokoll	D-7

ANHANG A - TECHNISCHE SPEZIFIKATIONEN

Messwerte

Parameter	Messbereich	Anzeige- Auflösung (Nied./Hoch)	Einh.
pН	6,6 bis 7,8	0,01/0,001	pH-Einheiter
pCO ₂	10 bis 200	1/0,1	mmHg
pO ₂	10 bis 700	1/0,1	mmHg
Na ⁺	100 bis 180	1/0,1	mmol/L
K^+	0,8 bis 9,99	0,1/0,01	mmol/L
Ca ⁺⁺	0,2 bis 3,0	0,01	mmol/L
Cl-	50 bis 160	1/0,1	mmol/L
Glu	30 bis 400 (70 - 400 mg/dL pO ₂ -Gehalt von 4	0,1 für Proben mit 401-700 mmHg)	mg/dL
Glu	1,67 bis 22,20	0,01	mmol/L
BUN	2,8 bis 112	0,1	mg/dL
Urea	1 bis 40	0,01	mmol/L
Lac	0,3 bis 17,5	0,01	mmol/L
tHb	5 bis 25	0,1	g/dL
SO_2	60 bis 100	1/0,1	%

Luftdruck

300 bis 800 mmHg

Betriebshöhe

bis 3048m

Verschmutzungsgrad

Verschmutzungsgrad 2, normale Laborumgebung. Es tritt nur nichtleitfähige Verschmutzung auf. Gelegentlich muss mit vorübergehender Leitfähigkeit durch Betauung gerechnet werden.

Betriebsparameter

Mindestprobenvolumen Probenart Probeneingabe Messzeit Umgebungstemperatur Relative Luftfeuchtigkeit Messverfahren

Eingabewerte

Patienten-ID Auftragsnummer Geburtsdatum Patientengeschlecht Patientemperatur Krankenaktennummer Kontonummer Test-ID Patientenname Vorname Nachname Alter Behandelnder Arzt Patientenstandort Probenentnahmezeit Probenart

Punktionsstelle

125 μL (60μL für B60-Kassette)
heparinisiertes Vollblut, Plasma oder Serum
Spritze, Kapillare oder ComfortSampler
automatische Aspiration
< 2 Minuten
10 °C - 30 °C
5% - 95% (nicht kondensierend)
optische Fluoreszenz,
für tHb/SO, optische Absorption/Reflexion

25 alphanumerische Zeichen
25 numerische Zeichen
Monat, TT, JJJJ
männlich, weiblich, oder unbekannt
14 - 44° C
25 numerische Zeichen
25 numerische Zeichen
25 alphanumerische Zeichen

25 alphabetische Zeichen 25 alphabetische Zeichen 1 - 15025 alphabetische Zeichen 25 alphabetische Zeichen Monat, TT, JJJJ, HH:MM Art/Ven/MixVen/Cap/Cord/CPB, wobei: Art = arteriell Ven = venös MixVen = gemischt venös Cap = Kapillar Cord = SchnurCPB = kardiopulmonaler Bypass LR/RR/LB/RB/LF/RF/Schnur/Skalp, wobei: LR = links radialRR = rechts radialLB = links brachialRB = rechts brachialLF = links femoral RF = rechts femoralSchnur = Schnur Skalp = Skalp

Allen-Test	Unbekannt, positiv, negativ
Hämoglobinart	Erwachsen/fetal
Bypass	Pump-Aus / Pumpe-Ein
O ₂ -Mode	Luft/Maske/T-P/NC/Vent/Beut/Haube/And. wobei: Luft = Luft Maske = Maske T-P = T-Stück NC = Nasenkanüle Vent = Beatmungsgerät Beutel = Beutel (manuelle Wiederbelebung) Haube = Haube And. = Andere
Ventilationsmodus	Nein/SIMV/PSV/PCV/CMV-AC/CPAP PCIVR/BIPAP, wobei: Nein = keine Einstellung SIMV = synchronisierte intermittierende mandatorische Beatmung PSV = druckunterstützte Beatmung PCV = druckkontrollierte Beatmung CMV/AC = kontrollierte mechanische Beatmung / assistierte Spontanbeatmung CPAP = kontinuierliche Beatmung gegen erhöhten Druck PCIVR = PCIVR-Beatmung BIPAP = BIPAP-Beatmung
Plateaudruck (Pplat)	0,0-100,0
Atemminutenvolumen (VE)	0 - 120
Spitzendruck (PIP)	0 - 140
Flussrate (FR)	0,00 - 300,00
Atemzugvolumen, TVol (VT)	0-4000
Druckunterstützung (PS)	0,0-99,9
Positive endexspiratorische Druckbeatmung (PEEP)	0 - 50
Frequenz (f)	0-155
Kontinuierliche Beatmung gegen erhöhten Druck (CPAP)	0 – 50
Gesamthämoglobin (tHb)	1,0 - 26,0 g/dL 0,62 - 16,14 mmol/L 1 - 260 g/L
FIO ₂	0,21 – 1,00
Mittlere korpuskuläre Hämoglobinkonzentration (MCHC)	29,0-37,0 %
Respirationsquotient (RQ)	0,70 – 2,00

P50	15,0 – 40,0 mmHg
BiLevel IPAP	0,2 - 9,9
BiLevel EPAP	0,2 - 9,9
I/E Ratio - Inspirationszeit	0,2 - 9,9
I/E Ratio - Exspirationszeit	0,2 - 9,9
Bemerkungen	50 alphanumerische Zeichen

Temperaturkorrigierte Werte

Parameter	Bereich	Anzeige- Auflösung (Nied./Hoch)	Einh.
pHt	6,6 - 7,8	0,01/0,001	pН
PCO_2^{t}	10 - 200	1/0,1	mmHg
PO_2^{t}	10 - 700	1/0,1	mmHg

Parameter	Einheiten	Messbereich	RefBereich	Quelle
Bikarbonat (HCO ₃ ⁻)	mmol/L	1.0 - 200,0	18 - 23	Tietz ¹ , S. 2179
Basenüberschuss (BE)	mmol/L	-40 - +40	-2 - +3	Tietz ¹ , S. 2179
Basenüberschuss $ecf(BE_{ecf})$	mmol/L	-40 - +40	-2 - +3	Tietz ¹ , S. 2179
Basenüberschuss act (BE_{act})	mmol/L	-40 - +40	-2 - +3	Tietz ¹ , S. 2179
Pufferbasen (BB)	mmol/L	0,0-100,0	46 - 52	Henry ² , S. 152
Gesamt-CO ₂ (tCO ₂)	mmol/L	1,0-200,0	22 - 29	Tietz ¹ , S. 2181
Standardbikarbonat (st. HCO ₃ ⁻)	mmol/L	1,0-200,0	22 - 24	Shapiro ³ , S. 175
Standard-pH (st.pH)	pН	6,500 - 8,000	7,35 - 7,45	Tietz ¹ , S. 2201
Sauerstoffsättigung (SO ₂ (c))	%	0,0-100	95,0 - 98,0	Henry ² , S. 1453
Sauerstoffgehalt (O ₂ ct)	vol %	0,0-56,0	15,0 - 23,0	Tietz ¹ , S. 2200
Hämatokrit (Hct(c))	%	15 - 75%	34 - 51	Tietz ¹ , S. 2192
Wasserstoffionen- konzentration (cH ⁺⁾	mmol/L	10,0 - 1000,0	36 - 44	Tietz ¹ , S. 2201
Alveolar-arterielle Sauerstoffpartialdruck- differenz (AaDO ₂)	mmHg	0,0-800,0	5 - 20	Henry ² , S. 157
Anionenlücke (AG)	mmol/L	3 - 30	10 - 20	Tietz ¹ , S. 2178
P50	mmHg	15,0-35,0	25 - 29	Tietz ¹ , S. 1392
nCa ⁺⁺	mmol/L	0,1-3,0	Sollte von der jeweiligen Institution bestimmt werden	

Rechenwerte

Die Rechenwerte des OPTI CCA-TS2 richten sich nach dem CLSI Standard C12-A, soweit vorhanden.

¹ Tietz, Norbert.W., "Reference Intervals", pp 2175-2217, Tietz Textbook of Clinical Chemistry, 2nd Edition, Philadelphia, W.B. Saunders Co., 1994.

² Henry JB, "Clinical Diagnosis and Management by Laboratory Methods", 19th Edition, Philadelphia, W.B. Saunders Co., 1996

³ Shapiro BA, Peruzzi WT, Kozelowski-Templin R. "Clinical Application of Blood Gases", 5th Ed.,(Chicago: Mosby, 1994)

Datenmanagement

Ausdruck	eingebauter Thermodrucker
Kommunikation	1 USB Port Typ A, 1 USB Port Typ B, 1 Ethernet Port
Format	ASCII, ASTM, POCT1 und CSV
Speicher	Der Datenspeicher des OPTI CCA-TS2 ist dynamisch. Speicherkapaziät:
	bis zu 500 Patientendatensätze,
	bis zu 70 QC-Datensätze pro Level
	bis zu 105 SRC-Datensätze pro Level

Stromversorgung Netzteil

 $100 \pm 10\%$ VAC bis $240 \pm 10\%$ VAC, 50/60 Hz, $1.8A \pm 10\%$

DC-Versorgung für Gerät

 $16V \pm 10\%, 3,75A \pm 10\%$

Überspannungskategorie

Überspannungskategorie II bei Anschluss an einen Zweigschaltkreis

Maße und Gewicht

Höhe	12,0 cm
Breite	36,2 cm
Tiefe	23,0 cm
Gewicht	
Gerät	3,9 kg
Batterie	0,42 kg

Klassifikationen

Prüfzeichen:	UL 61010-1, IEC 61010-2, IEC 61010-2-101, CAN/CSA C22.2 NO.61010-1, CE, FCC Klasse B
LED Klassifikation:	IEC 62471 Risikogruppe 0 (freie Gruppe)
Betriebsart:	Dauerbetrieb
Laser-Klassifikation:	Das Gerät ist ein Klasse 1 Lasergerät gemäß IEC 60825-1
Explosionsschutz:	Das Gerät darf nicht in explosionsfähiger Umgebung betrieben werden

Temperatur⁴

$$T[\circ F] = \frac{9}{5} \cdot T[\circ C] + 32$$
$$T[\circ C] = \frac{5}{9} \cdot (T[\circ F] - 32)$$

Einheiten der Mess- und Eingabewerte der Berechnungen

рН	pH-Einheiten	Clmmol/L
PCO ₂	mmHg	Glumg/dL
PO ₂	mmHg	BUN mg/dL
Na	mmol/L	Lacmmol/L
Κ	mmol/L	tHbg/dL
Са	mmol/L	SO ₂ %

⁴ Burtis AB, Ashwood ER, "Tietz Textbook of Clinical Chemistry" 2nd Ed. (Philadelphia, W.B. Saunders 1994), p. 2165

Umrechnungstabelle⁵

ctO_2, O_2ct, tCO_2	1 vol% = 1 ml/dl = 0,4464 mmol/l
tHb	1 g/dl = 10 g/l = 0,6206 mmol/l
Luftdruck, PCO_2 , PO_2	1 mmHg = 1,3333 mbar = 0,1333 kPa
ionisiertes Calcium (Ca++)	1 mmol/L = 4,008 mg/dL = 2mEq/L
Glucose	1 mmol/L = 18,02 mg/dL
	1 mg/dL = 0,0555 mmol/L
BUN(urea)	1 mmol/L urea = 2,801 mg/dL BUN
Laktat	1 mmol/L = 9,01 mg/dL
	1 mg/dL = 0,111 mmol/L

Gleichungen⁶

cH⁺

Wasserstoffionenkonzentration (Aktivität) im Plasma.

$$cH^+ = 10^{(9-pH)}$$
 [nmol/L]⁶

st.pH

Standard pH-Wert von Blut definiert als der pH-Wert einer Blutprobe, die bei 37 °C mit einer Gasmischung mit $pCO_2 = 5,33$ kPa (40 mmHg) äquilibriert wurde.

st.pH =	
$(0.8262 - 0.01296 \cdot \text{tHb} + 0.006942 \cdot \text{BE}) \cdot \text{lg} \cdot (0.025 \cdot PCO_2) + \text{pH}$	[pH-Einheiten] ⁶

HCO3-

Bikarbonatkonzentration im Plasma.

 $\text{HCO}_{3}^{-} = 0.0307 \cdot \textbf{PCO}_{2} \cdot 10^{(\text{pH}-6.105)}$

[mmol/L]¹

⁵ Burtis AB, Ashwood ER, "Tietz Textbook of Clinical Chemistry" 2nd Ed. (Philadelphia, W.B. Saunders 1994), p. 46.

⁶ Marsoner HJ, "Quantities and Algorithms Related to Blood Gas and Acid Base Analysis", AVL Medizintechnik Graz, 1995.

st.HCO₃-

Standard-Bikarbonatkonzentration von Blut, definiert als die Plasmabikarbonatkonzentration im Blut, die bei 37 °C mit einer Gasmischung mit pCO₂ = 5,33 kPa (40 mmHg) äquillibriert wurde.

st. HCO₃⁻ = $10^{(st.pH-6.022)}$ [mmol/L]⁶

tCO,

Gesamtkonzentration von CO, in Plasma, die Summe von gelöstem CO, und Bikarbonat.

$$tCO_2 = HCO_3^- + (0.0307 \cdot PCO_2)$$
 [mmol/L]⁷

BE

Basenüberschuss des Blutes - die Konzentration titrierbarer Base, wenn das Blut mit einer starken Base oder Säure auf Plasma-pH = 7,40 titriert ist mit $pCO_2 = 5,33$ kPa (40mmHg), bei 37°C.

$$BE = (1 - 0.014 \cdot tHb) \cdot \left[(1.43 \cdot tHb + 7.7)(pH - 7.4) - 24.8 + HCO_3^{-1} \right] \quad [mmol/L]^{-7}$$

BE_{ecf}

Der Basenüberschuss der extrazellulären Flüssigkeit ist eine Größe, die nur die nicht respiratorischen Komponenten des Säure-Basen Gleichgewichtes angibt (tHb = 5 g/dL).

$$BE_{ecf} = 16.2 \cdot (pH - 7.4) - 24.8 + HCO_3^{-1}$$
 [mmol/L]⁷

BE_(act)

Basenüberschuss bei tatsächlicher Sauerstoffsättigung.

$$BE_{(act)} = (1 - 0.0143 \cdot tHb) \cdot \left[(1.63 \cdot tHb + 9.5) \cdot (pH - 7.4) - 24.26 + HCO_3^{-1} \right] - 0.2 \cdot tHb \cdot \left(1 - \frac{SO_2}{100} \right)$$
[mmol/L]⁸

⁷ CLSI. Blood Gas and pH Analysis and Related Measurements; Approved Guideline. NCCLS document C46-A, 2001.

⁸ Zander R., Die korrekte Bestimmung des Base Excess (BE mmol/l) im Blut. Anesthesiol. Intensivmed. Notfallmed. Schmerzther.

BB

Die Pufferbase gibt die Konzentration von gepufferten Anionen an, die im Vollblut enthalten sind, um starke Säuren zu puffern und enthält hauptsächlich Proteinanionen und Bikarbonat. Von den Proteinanionen ist Hämoglobin das wichtigste.

 $BB = BE + 41.7 + 0.42 \cdot tHb$

[mmol/L]⁶

$SO_2(c)$

Das prozentuale Verhältnis zwischen Oxyhämoglobin (mit Sauerstoff gesättigtem Hämglobin) und Desoxyhämoglobin (sauerstoffarmem Hämoglobin) wird als Sauerstoffsättigung bezeichnet. Die Sauerstoff-Hämoglobin Dissoziationskurve ermöglicht theoretisch, dass die Sauerstoffsättigung aus dem verfügbaren Hämoglobin berechnet werden kann, vorausgesetzt, die Form der Kurve ist bekannt. Bekannte Faktoren, die diese Kurve beeinflussen sind: Hämoglobin, pH, pCO₂, Temperatur und 2,3 Diphosphogluterat-Konzentrationen (2,3 DPG). Obwohl es möglich ist diesen Wert zu berechnen, können die Annahmen, die in diesen Berechnungen gemacht werden zu schwerwiegenden Fehlern in den daraus resultierenden Werten führen, speziell für jene Patienten, die in einem kritischen Zustand sind. Mit dem OPTI CCA-TS2 kann der SO₂-Wert in der Blutprobe gemessen werden. Die Verwendung des gemessenen SO₂-Wertes, soweit vorhanden, ist dem eines berechneten SO₂-Wertes vorzuziehen.

Wenn kein Messwert vorhanden ist, kann der Wert folgendermaßen berechnet werden:

$$SO_{2}\% = \frac{Q}{Q+1} \cdot 100\%$$

Erwachsen:
$$lgQ = 2.9 \cdot lgPO_{2}^{k} + 1.661 \cdot 10^{-0.074PO_{2}^{k}} - 4.172$$

$$lgPO_{2}^{k} = lgPO_{2} + 0.48 \cdot (pH - 7.4) - lg(\frac{P_{50}}{26.7}) + 0.0013 \cdot BE_{B}$$
(7)
$$P_{50} = 26.7$$
(6)
Fetal:
$$lgQ = 2.9 \cdot lgPO_{2}^{k} + 1.3632 \cdot 10^{-0.0533PO_{2}^{k}} - 4.113$$

$$lgPO_{2}^{k} = lgPO_{2} + 0.48 \cdot (pH - 7.2) - lg(\frac{P_{50}}{26.7}) + 0.0013 \cdot BE_{B}$$

$$P_{50} = 21.5$$

ctO₂

Die Sauerstoffkonzentration ist die Summe des an Hämoglobin gebundenen Sauerstoffes und der Menge an gelöstem Sauerstoff im Plasma. Dieser Wert wird aus dem gemessenen O_2 Hb und, falls vorhanden, aus ctHb berechnet. Er wird aus dem berechneten SO₂ abgeleitet, wenn der gemessene O_2 Hb-Wert nicht direkt verfügbar ist.

Wenn ein gemessener O₂Hb- und tHb-Wert verfügbar ist:

$$ctO_2 = 1.39 \cdot \frac{O_2 Hb}{100} \cdot tHb + 0.00314 \cdot PO_2$$
 [vol%]

HINWEIS: Ist pO_2 nicht verfügbar, wird ctO_2 mit $pO_2 = 90$ mmHg berechnet.

Wenn kein O₂Hb- und ctHb-Messwert zur Verfügung steht und der SO₂-Rechenwert aktiviert ist:

$$tO_2 = 1.39 \cdot \frac{SO_2}{100} \cdot tHb + 0.00314 \cdot PO_2$$
 [vol%]⁷

HINWEIS: Ist pO, nicht verfügbar, wird ctO, mit pO, = 90 mmHg berechnet.

P50

Der Sauerstoffpartialdruck bei Halbsättigung, *P*50, ist definiert als der pO_2 -Wert einer Blutprobe, bei der 50 % des Hämoglobins mit Sauerstoff gesättigt sind. Der tatsächliche *P*50-Wert kann nur durch Interpolation nach der Messung der Sauerstoffsättigung der Blutprobe festgestellt werden, wenn diese Blutprobe so mit Sauerstoff tonometriert wird, dass ein Oxyhämoglobinwert von etwas weniger oder mehr als 50 % bei einem konstanten pH-Wert von 7,4 und einem konstanten pCO₂-Wert von 5,33 kPa (40 mmHg) erreicht wird. Der OPTI CCA-TS2 ermöglicht die Ableitung des *P*50 aus SO₂%, pO₂ und pH. Ist ein gemessener SO₂-Prozentsatz nicht verfügbar, kann der *P*50-Wert extern eingegeben werden.

Für Erwachsenenhämoglobin:

$$P_{50} = 26.7 \cdot 10^{(\lg PO_2 - \lg PO_2^{k})}$$

wobei:
$$\lg PO_2^{k} = \frac{(\lg Q + 4.172)}{2.9}$$
$$Q = \frac{SO_2}{100\% - SO_2}$$

[mmHg]⁶

Für Fetalhämoglobin:

$$P_{50} = 25.0 \cdot 10^{(\lg PO_2 - \lg PO_2^{k})}$$

wobei:

$$\lg PO_2^{k} = \frac{(\lg Q + 4.113)}{2.9}$$

$$Q = \frac{SO_2}{100\% - SO_2}$$
[mmHg]⁶

AaDO₂

Der alveolararterielle Sauerstoffpartialdruckgradient ($pAO_2 - paO_2$) ist die Differenz zwischen dem alveolaren Sauerstoffpartialdruck, wie oben berechnet, und dem gemessenen Sauerstoffpartialdruck von arteriellem Blut.

$$pAO_{2} = (p_{gesamt} - 47) FIO_{2} - pACO_{2} [FIO_{2} + (1 - FIO_{2})/R]$$
[mmHg]⁷
$$pACO_{2} = paCO_{2} (alveolarer pCO_{2})$$

obige Gleichung gilt für $pAO_{2} > pO_{2}$, *ansonsten* $pAO_{2} = pO_{2}$

pHt

pH-Wert bei einer von 37 °C abweichenden Patiententemperatur.

$$pH^{\tau} = pH - [0.0147 + 0.0065 \cdot (pH - 7.4)] \cdot (t - 37)$$
 [pH-Einheit]⁷

cH⁺t

Wasserstoffionenkonzentration bei einer von 37 °C abweichenden Patiententemperatur.

$$cH^{t} = 10^{(9-pH^{t})}$$
[nmol/L]⁶

pCO_2^{t}

 pCO_2 -Wert bei einer von 37 °C abweichenden Patiententemperatur. $PCO_2^{t} = PCO_2 \cdot 10^{0.019(t-37)}$ [mmHg]⁷

$\textbf{pO}_2^{\ t}$

 pO_2 -Wert bei einer von 37 °C abweichenden Patiententemperatur.

$$PO_{2}^{t} = PO_{2} \cdot 10^{\left[\frac{5.49 \cdot 10^{-11} \cdot PO_{2}^{3.88} + 0.071}{9.72 \cdot 10^{-9} \cdot PO_{2}^{3.88} + 2.30}\right](t-37)}$$

[mmHg]⁶

AaDO₂^t

Alveolararterielle Sauerstoffpartialdruckdifferenz bei einer von 37 °C abweichenden Patiententemperatur.

$$\begin{array}{l} \mathsf{AaDO}_{2}^{t} = \mathsf{PAO}_{2}^{t} - \mathsf{PaO}_{2}^{t} & [mmHg]^{7} \\ wobei: \\ \mathsf{pAO}_{2}^{t} = (\mathsf{p}_{\mathsf{gesamt}} - \mathsf{pH}_{2}\mathsf{O}^{t}) \operatorname{FIO}_{2} - \mathsf{pACO}_{2}^{t} [\operatorname{FIO}_{2} + (1 - \operatorname{FIO}_{2})/\mathrm{R}] \\ & [0.0237 - 0.0001 \ (t\text{-}37)] \ (t\text{-}37) \\ mit \ \mathsf{pH}_{2}\mathsf{O}^{t} = 47 \ * \ 10 \\ und \ \mathsf{pACO}_{2} = \mathsf{paCO}_{2} \ (alveolarer \ \mathsf{pCO}_{2} = arterieller \ \mathsf{pCO}_{2}) \\ obige \ Gleichung \ gilt \ für \ \mathsf{pAO}_{2}^{t} \ge \mathsf{pO}_{2}^{t}, \ ansonsten \ \mathsf{pAO}_{2}^{t} = \mathsf{pO}_{2}^{t} \end{array}$$

Hct(c)

Hct(c) als Funktion von tHb.

$$Hct(c) = tHb[g/dl]/(MCHC\%/100)$$
[%]

wobei MCHC% die mittlere korpuskulare Hämoglobinkonzentration, d.h. die durchschnittliche Hämoglobinkonzentration nach Gewicht in einem durchschnittlichen roten Blutkörperchen, darstellt. Vorgabewert für MCHC% = 33,3% (Eingabebereich: 29,0% bis 37,0%)

Anionenlücke (AG)

Die Anionenlücke (AG -Anion Gap) ist die Differenz zwischen den Summen der Konzentrationen der wichtigsten Kationen und Anionen in der Blutprobe.

$$AG = Na^{+} + K^{+} - Cl^{-} - HCO3^{-}$$
[mmol/L]

nCa⁺⁺

Der ionisierte Calciumwert bei pH = 7,40.

Für Blut:

 $nCa^{++} (pH = 7,4) = Ca^{++} * 10^{0.22^{*}(pH-7.4)}$ [mmol/L]

Für Plasma oder Serum:

 $nCa^{++} (pH = 7,4) = Ca^{++} * 10^{0.24*(pH-7.4)}$ [mmol/L]

⁹ Simmons A, ed. Hematology, "A Combined Theoretical & Technical Approach", pp. 28-29 (Philadelphia, W.B. Saunders, 1989)

ANHANG C - WARTUNGSTABELLE

Monat: _____ Jahr: _____

WÖCHENTLICH:	Woche: 1		Woche: 2		Woche: 3		Woche: 4	
	Datum	Initial.	Datum	Initial.	Datum	Initial.	Datum	Initial.
Probenmesskammer								
reinigen								

VIERTELJÄHRLICH:								
	Datum	Initial.	Datum	Initial.	Datum	Initial.	Datum	Initial.
tHb-Kalibrierung								
durchführen								

JÄHRLICH:								
	Datum	Initial.	Datum	Initial.	Datum	Initial.	Datum	Initial.
Peristaltikpumpen- kassette ersetzen								

NACH BEDARF:								
	Datum	Initial.	Datum	Initial.	Datum	Initial.	Datum	Initial.
Oberflächen reinigen								
Gasflasche ersetzen								
Druckerpapier ersetzen								

F

ANHANG D - PROTOKOLLFORMATE

Allgemeines Messprotokoll

(Beispiel Blutgasmessung)

>>> OPTIMedical	HÄMOGLOBIN/SAUERST. STATUS
	tHb g/dL
OPTI CCA-TS2	S02 %
Patientenprotokoll	Hct[c] %
TT-MMM-JJ HH:MM	
	EINGABEWERTE
PATIENTEN-INFORMATION	Pplat: 62.0
Patienten-ID	Mvol (VE): 50 L
FG34567	PIP: 6
Auftragsnr.	Flussrate: 165.00 Lpm
5678912	Tvol (VT): 50 ml
Krankenaktennr.	
00541698	DEED: 10
Test ID	FLLF. 19 Froquenz(f): 60 hpm
BLUTGAS	CDAD: 61
Geburtsdatum: 25-Jan-1985	
Geschlecht: Male	tHD: 15.0 g/dL
Temperatur: 37.0 C	FI02: 0.21
Vorname des Patienten	MCHC: 33.3 %
JOHANN	RQ: 0.84
Nachname des Patienten	P50: 26.7 mmHg
SCHMITT	BiLevel: 1.0 / 1.0
Behandelnder Arz:	I/E: 1.0 / 1.0
Dr. Maier	Bemerkungen:
Standort des Patienten:	
Ambulanz	Luftdruck: 739.6 mmHg
Zeit der Probenentnahme:	Benutzer-ID:
12-Feb-13 11:26	123456789012
Alter: 28	
Probenart: Art	Charge: 250100
Punkt.: LR	S/N: 0
Allen-Test: Negativ	Version: 1.000037
tHb Type: Erwachsen	
Bypass: Pumpe-aus	REFERENZBEREICHE
O2 Mode: Luft	nH 7,200 - 7,600
Vent Mode: Nein	PCO2 30.0 - 50.0 mmHg
	PO2 70.0 - 700.0 mmHg
Probennr.: 291	tHb 12.0-17.0 g/dl
SAEURE/BASEN	502 90.0 - 100.0 //
pH ↓ 7.143	MELDUNGEN
PC02 ↑ 76.0 mmHg	(VIELDUNGEN
P02 74.5 mmHg	pH unter 7.200 (Ref.Lim)
BE ↓ - 6.0 mmol/L	PCO2 uber 50.0 (Ref.Lim)
tCO2 27.3 mmol/L	thb Ergebnis unterdruckt.
HC03 ↑ 24.9 mmol/L	SO2 Ergebnis unterdrückt.

SRC-Messprotokoll

(Beispiel E-Ca)

> OPTIMedical **OPTI CCA-TS2** SRC-Messung TT-MMM-JJ HH:MM S/N: 123 Version: 1.23.4567 Level: 3 SRCID: 12345678 Verf.: MMMJJJJ Ergebnis Bereiche 0K? 7.601 7.580-7.620 pН 0K PC02 20.0 18.0-22.0 0K 170.0 167.0-173.0 P02 0K Na+ 65.1 42-148 0K K+ 7.00 6.70-7.30 0K Ca++ 0.70 0.60-0.80 0K tHb 8.5 6.5-9.5 0K S02 98.6 96.0-100.0 0K SRC-Testergebnis: Gültig Benutzer-ID: Benutzer123
SRC-Statistikprotokoll

>> OPTIMedical	HÄMOGLOBIN-GRENZWERTE tHb 18.5 - 21.5 g/dL
	SO2 68.0 - 72.8 %
SRC-Statistikprotokoll	
	Datum tHb SO2 OK?
	Feb4 20.0 70.0 OK
S/N· 123	Feb4 19.9 69.9 OK
Version: 1 00 0037	Feb4 19.9 69.9 OK
	Feb4 20.0 70.0 OK
level 1	Feb7 20.0 70.0 OK
SRCID: 12345678	Feb7 19.9 70.0 OK
Verf: MMMIIII	MW: 19.9 69.9
Anzahl gem : 6	SD: 0.1 0.1
Anzahl ok: 6	CV%: 0.3 0.3
	ZUSÄTZLICHE GRENZWERTE
$\begin{array}{c} ADG-GREINZWERTE. \\ BH 7080 7120 \end{array}$	Ca++ 1.70 - 1.90 mmol/L
PCO2 68 0 - 72 0 mmHg	
PO2 570-630 mmHg	Datum Ca++ OK?
	Feb4 1.80 OK
Datum nH PC02 P02 OK?	Feb4 1.80 OK
Feb4 7.120 67.8 59.3 OK	Feb4 1.80 OK
Feb4 7.120 72.2 59.7 OK	Feb4 1.80 OK
Feb4 7.110 69.8 58.7 OK	Feb7 1.80 OK
Feb4 7.100 69.2 58.6 OK	Feb7 1.80 OK
Feb7 7.070 67.8 58.8 OK	MW: 1.80
Feb7 7.080 67.3 57.3 OK	SD: 0.00
MW: 7.107 70.0 56.6	CV%: 0.00
SD: 0.015 1.9 1.7	
CV%: 0.210 2.8 3.0	METABOLITEN:
	Glu 36.0 - 44.0 mg/dL
ISE-GRENZWERTE	BUN 4.2 - 7.0 Mg/ aL
Na+ 123.0 - 127.0 mmol/L	
K+ 2.20 - 2.80 mmol/L	Datum Clu BUN Laktat OK2
CI- 78.0 - 82.0 mmHg	E_{ab}/I 100 0K
	Feb4 1.00 OK
Datum Na+ K+ Cl- OK?	$F_{eb}4$ 5.6 1.00 OK
Feb4 125.0 2.50 OK	Feb4 40.0 5.6 1.00 OK
Feb4 125.0 2.50 OK	Feb7 40.0 5.6 1.00 0K
Feb4 125.0 2.50 OK	Feb7 40.0 5.6 1.00 OK
Feb4 125.0 2.50 OK	MW: 40.0 5.6 1.00
Feb7 125.0 2.50 OK	SD: 0.2 0.0 0.00
Feb7 125.0 2.50 79.8 OK	CV%: 0.4 0.9 0.00
MW: 125.0 2.50 0.0	
SD: 000.0 0.00 0.0	
Cv%: 000.0 0.00 0.0	

QC-Messprotokoll

(Beispiel E-Ca)

OPTI Medical OPTI CCA-TS2 QC-Messung TT-MMM-JJ HH:MM				
S/N: 123 Version: 1.23.4567				
Level: 3 OPTI CHECK				
QCCh.:	nr.: 2 1234	Verf.: MMMJ	111	
	Ergebni	s Bereiche	OK?	
рН	7.601	7.580 - 7.620	OK	
PC02	20.0	18.0 - 22.0	OK	
P02	170.0	167.0 - 173.0	OK	
Na+	65.1	42 - 148	OK	
K+	7.00	6.70 - 7.30	OK	
Ca++	0.70	0.60 - 0.80	OK	
tHb	8.5	6.5 - 9.5	OK	
S02	98.6	96.0 - 100.0	OK	
QC-Testergebnis: Gültig In Datenbank speichern: Ja				
Luftdruck: 734.6mmHg				
Benutzer-ID:				
Benutzer123				
Charge: 123456				
MELDUNGEN				

QC-Statistikprotokoll

	HÄMOGLOBIN-GRENZWERTE		
OPTIMEDICA	tHb 12.2 - 15.2	g/dL	
	S02 87.0 - 93.8	%	
0C-Statistikprotokoll			
	Datum tHb SO2	OK?	
	Feb4 14.2 88.6	OK	
S/N· 123	Feb4 14.3 88.8	OK	
Version: 1 00 0037	Feb4 14.0 88.5	OK	
	Feb4 14.2 88.6	OK	
l evel 1	Feb7 14.2 88.6	OK	
OCCh · 1278 Verf · MMMIIII	Feb7 14.2 88.9	OK	
KassCh.: 250100	MW: 14.2 88.7		
251402	SD: 0.1 0.2		
Anzahl gem.: 6	CV%: 0.7 0.2		
Anzahl ok : 2			
	ZUSÄTZLICHE GRENZWE	ERTE	
ABG-GRENZWERTE:	Ca++ 1.10 - 1.30	mmol/L	
pH 7.370 - 7.490			
PC02 35.0 - 45.0 mmHg	Datum Ca++	OK?	
P02 88.0 - 118.0 mmHg	Feb4	OK	
5	Feb4	OK	
Datum pH PCO2 PO2 OK?	Feb4 1.15	OK	
Feb4 Hoch ↓12.3 ↑153.1 N	Feb4	OK	
Feb4 Hoch ↓10.8 ↑154.7 N	Feb7	OK	
Feb4 Hoch ↓16.1 ↑148.4 N	Feb7 1.24	OK	
Feb4 Hoch ↓14.7 ↑151.3 N	MW: 1.19		
Feb7 7.450 43.9 96.3 OK	SD: 0.06		
Feb7 7.431 44.3 102.6 OK	CV%: 5.33		
MW: 7.441 23.7 134.1			
SD: 0.013 15.9 27.0			
CV%: 0.181 67.2 20.2			
ISE-GRENZWERTE			
Na+ 136.0 - 150.0 mmol/L			
K+ 4.50 - 5.30 mmol/L			
Feb4 OK			
Feb4 5.02 N			
Γούτι 3.03 Ν Γομί			
Feb7 142 9 4 88 OK			
MW· 496			
SD: 0.11			
CV% 2 14			

Г

Wartungsprotokoll

Fehlerprotokoll

>>> OPTIMedical

OPTI CCA-TS2 FEHLER-Protokoll TT-MMM-JJ HH:MM

S/N: 123 Version: 1.23.4567

TT-MMM-JJ HH:MM WARNUNG-Kassette nicht eingelegt 1

TT-MMM-JJ HH:MM FEHLER-Kassette nicht eingelegt 2

TT-MMM-JJ HH:MM FEHLER - Gas abgelaufen

TT-MMM-JJ HH:MM WARNUNG - Luftblase

TT-MMM-JJ HH:MM Stopp - Gas leer

B-Lac-Einstellung*

>> OPTIMedical **OPTI CCA-TS2** B-Lac-Einstellungsprotokoll TT-MMM-JJ HH:MM Level: 2 OPTI-check QCCh: 1234 Verf.: MMMJJJJ pH-Einstellpunkt Messung vor / nach 1 7.4232 / 7.4336 2 7.4250 / 7.4354 3 7.4037 / 7.4142 4 7.4251 / 7.4356 5 7.4208 / 7.4313 ----- / -----AVG pH 7.4196 / 7.4300 SD: 0.00805 Ausreißer: 0 Skalar: 1.011741 B-Lac-Einstellung : Gültig S/N:2999 Charge:020651

^{*} B-Lac-Kassetten sind zur Zeit in Deutschland nicht erhältlich.

INDEX

A

Anwendungsbereich 9-1 Anzeige überprüfen 8-29 Arbeitsweise 9-2 ASCII Ethernet 3-38 ASCII seriell 3-38 ASTM Ethernet 3-38 ASTM Handshaking 3-39 ASTM seriell 3-38

B

Barcodescanner Beschreibung 1-5 überprüfen 8-24 Batterie Beschreibung 1-6 Batteriespannung überprüfen 8-22 Bedarfsartikel 10-2 Benutzergruppen 3-26 Benutzer-Identifikationen 3-24 Betriebshöhe A-1 Betriebsparameter A-2

С

Calcium (Ca++) Grenzwerte der Standardreferenzkassetten (SRC) Ca-2 Interferenzen Ca-2 Klinische Bedeutung Ca-1 Korrelation mit anderen Methoden Ca-5 Linearität Ca-3 Messbereich Ca-2 Messprinzip Ca-1 Reproduzierbarkeit Ca-3 Chlorid (Cl-) Grenzwerte der Standardreferenzkassetten (SRC) Cl-1 Interferenzen Cl-2 Klinische Bedeutung Cl-1 Korrelation mit anderen Methoden Cl-5 Linearität Cl-3 Messbereich Cl-1

Messprinzip Cl-1 Reproduzierbarkeit Cl-2 ComfortSampler 5-2, 9-4

D

Daten importieren/exportieren 6-12 Datenbank exportieren 6-15 Datenmanagement 6-1 Daten-Manager 2-10 Datumseinstellung 3-1 DC-Versorgung für Gerät A-6 Diagnostik 8-1, 8-19 Diagnostikprotokolle drucken 6-7 Drehventil überprüfen 8-23 Drucker Einstellungen 3-30 überprüfen 8-25 Druckerpapier ersetzen 7-11

E

Eingabewerte 9-6, A-2 Einschränkungen 9-12 Ersatzteile 10-2 Ethernet 3-38 Schnittstelle überprüfen 8-27 Ethernet-Anschluss 1-6 Ethernet-Einstellungen 3-41 Exportieren Datenbank 6-15 Konfigurationsdaten 6-14 Messergebnisse 6-12

F

Fatale Fehler 8-17 Fehlerbehebungsverfahren für Barcode-Scanner 8-36 Fehlerbehebungsverfahren für tHb/ SO2 8-35 Fehlermeldungen 8-7 Fehlerprotokoll D-7 Fehlerprotokolle 6-10 Fehlersuche 8-1 Fehler- und Warnmeldungen 8-1 FSet (Werkseinstellungen) prüfen 8-24 Funktionsgrundlagen 9-1

G

Gasdruck überprüfen 8-20 Gasflasche Beschreibung 1-9 ersetzen 7-9 installieren 2-3 Gastest 8-31 Gasventil überprüfen 8-23 Gerätekomponenten 1-3 Geräteschild 1-6 Gerinnungshemmer 5-1 Gesamthämoglobinkonzentration (ctHb) Grenzwerte der Standardreferenzkassetten (SRC) THB/SO2-2 Interferenzen THB/SO2-3 Klinische Bedeutung THB/SO2-1 Korrelation mit anderen Methoden THB/SO2-7 Linearität THB/SO2-5 Messbereich THB/SO2-2 Messprinzip THB/SO2-2 Reproduzierbarkeit THB/SO2-4 Gleichungen A-8 Glucose (Glu) Grenzwerte der Standardreferenzkassetten (SRC) Glu-2 Interferenzen Glu-2 Klinische Bedeutung Glu-1 Korrelation mit anderen Methoden Glu-5 Linearität Glu-3 Messbereich Glu-2 Messprinzip Glu-2 Reproduzierbarkeit Glu-3

Η

Hämoglobinsauerstoffsättigung (SO2%) Grenzwerte der Standardreferenzkassetten (SRC) THB/SO2-2 Interferenzen THB/SO2-3

Klinische Bedeutung THB/SO2-1 Korrelation mit anderen Methoden THB/SO2-7 Linearität THB/SO2-5 Messbereich THB/SO2-2 Messprinzip THB/SO2-2 Reproduzierbarkeit THB/SO2-4 Hardware-Einstellungen 3-35 Harnstoff-Stickstoff (BUN/Urea) Grenzwerte der Standardreferenzkassetten (SRC) BUN-2 Interferenzen BUN-2 Klinische Bedeutung BUN-1 Korrelation mit anderen Methoden BUN-5 Linearität BUN-3 Messbereich BUN-2 Messprinzip BUN-1 Reproduzierbarkeit BUN-3

I

Interferenzen 9-13

K

Kalibratoren 10-1 Kalibrierkassette Beschreibung 1-9 Kalibrierprüfung 4-3 Kalibrierung 4-1, 9-9 tHb 7-2 Kalium (K+) Grenzwerte der Standardreferenzkassetten (SRC) K-1 Interferenzen K-2 Klinische Bedeutung K-1 Korrelation mit anderen Methoden K-5 Linearität K-3 Messbereich K-1 Messprinzip K-1 Reproduzierbarkeit K-2 Kapillarröhrchen 5-2 Kassetten 10-1 Kassettensensor überprüfen 8-34 Klassifikationen A-7 Kommunikationseinstellungen 3-38 Konfigurationsdaten exportieren 6-14 Kontrollmittel 10-1 Korrelationsfaktoren 3-21 Kühlungsventilator überprüfen 8-22

L

Laktat Grenzwerte der Standardreferenzkassetten (SRC) Lac-2 Interferenzen Lac-2 Klinische Bedeutung Lac-1 Korrelation mit anderen Methoden Lac-5 Linearität Lac-4 Messbereich Lac-1 Messprinzip Lac-1 Reproduzierbarkeit Lac-3 Laktat-Einstellung 8-32, D-8 LEDs prüfen 8-21 Letzten Barcode aktivieren 3-11 Letzte Patienten-Info aktivieren 3-11 Lieferungsinhalt 1-2 Luftdruck 3-35, A-1 Luftdruck überprüfen 8-21

Μ

Maßeinheiten 3-32 Maße und Gewicht A-6 Materialien 9-5 Menüstruktur B-1 Messbereiche A-1 Messergebnisse exportieren 6-12 Messgrundlagen 9-1 Messprinzipien 1-1 Messprotokolle drucken 6-1 Messwertbereiche 3-16 Messwerte deaktivieren 3-11

Ν

Natrium (Na+) Grenzwerte der Standardreferenzkassetten (SRC) Na-2 Interferenzen Na-2 Klinische Bedeutung Na-1 Korrelation mit anderen Methoden Na-5 Linearität Na-3 Messbereich Na-1 Messprinzip Na-1 Reproduzierbarkeit Na-3 Netzgerätanschlussbuchse 1-7 Nicht-Bereit-Meldungen 8-14

0

Optik überprüfen 8-26

Р

Parameter Maßeinheiten 1-1 Messbereiche 1-1 Parameter deaktivieren 5-7 Passwort 3-28 Patientendaten eingeben 5-11 Patienten-Diagnostikprotokolle 6-7 Patienteneinstellungen 3-8 Patienteninformationen 3-8 Patienten-Messprotokolle 6-1 PCO2 Grenzwerte der Standardreferenzkassetten (SRC) PCO2-1 Interferenzen PCO2-1 Klinische Bedeutung PCO2-1 Korrelation mit anderen Methoden PCO2-4 Linearität PCO2-3 Messbereich PCO2-1 Messprinzip PCO2-1 Reproduzierbarkeit PCO2-2 pCO2 (Trockensensor - B-Lac-Kassette) Grenzwerte der Standardreferenzkassetten (SRC) PCO2-B-1 Interferenzen PCO2-B-2 Klinische Bedeutung PCO2-B-1 Korrelation mit anderen Methoden PCO2-B-5 Linearität PCO2-B-4 Messbereich PCO2-B-1 Messprinzip PCO2-B-1 Reproduzierbarkeit PCO2-B-3 Peristaltikpumpe Beschreibung 1-5 Peristaltikpumpenkassette ersetzen 7-6 pН Grenzwerte der Standardreferenzkassetten (SRC) pH-2 Interferenzen pH-2 Klinische Bedeutung pH-1 Korrelation mit anderen Methoden pH-5 Linearität pH-4 Messbereich pH-1

Messprinzip pH-1 Reproduzierbarkeit pH-3 pH (Trockensensor - B-Lac-Kassette) Grenzwerte der Standardreferenzkassetten (SRC) pH-B-2 Interferenzen pH-B-2 Klinische Bedeutung pH-B-1 Korrelation mit anderen Methoden pH-B-5 Linearität pH-B-4 Messbereich pH-B-2 Messprinzip pH-B-1 Reproduzierbarkeit pH-B-3 pO2 Grenzwerte der Standardreferenzkassetten (SRC) PO2-1 Interferenzen PO2-1 Klinische Bedeutung PO2-1 Korrelation mit anderen Methoden PO2-4 Linearität PO2-3 Messbereich PO2-1 Messprinzip PO2-1 Reproduzierbarkeit PO2-2 pO2 (Trockensensor - B-Lac-Kassette) Grenzwerte der Standardreferenzkassetten (SRC) PO2-B-1 Interferenzen PO2-B-2 Klinische Bedeutung PO2-B-1 Korrelation mit anderen Methoden PO2-B-5 Linearität PO2-B-4 Messbereich PO2-B-1 Messprinzip PO2-B-1 Reproduzierbarkeit PO2-B-3 POCT1A 3-38 Probenanalyse 5-5 Probenanforderungen 5-1 Probenbehälter wählen 3-20 Probeneinfüllmund Beschreibung 1-8 Probenentnahme 5-1 Probenentnahmegefäße 5-1, 9-3 Probenhandhabung 5-3 Probenlagerung 5-3 Probenmesskammer Beschreibung 1-4 Probenmessung 5-1 Probenröhrchen 5-3, 9-4 Probenvorbereitung 5-4 Profil 5-6

Protokollformate D-1 Messprotokoll D-1 QC-Messprotokoll D-4 SRC-Messprotokoll D-2 SRC-Statistikprotokoll D-3 Pumpenförderung überprüfen 8-28 Pumpenmotor überprüfen 8-29

Q

QC-Diagnostikprotokolle 6-9 QC-Einstellungen 3-3 QC-Manager 2-10 QC-Messprotokolle 6-5 QC-Probe Messung (OPTI CHECK) 4-9 QC-Sperre 3-5 QC-Statistikprotokoll D-5 QC-Statistikprotokolle 6-6 Qualitätskontrolle 4-1, 9-10 Empfehlungen 4-3 externe (Ringversuche) 4-2

R

Rechenwertbereiche 3-18 Rechenwerte 3-14, 9-9, A-4 Referenzbereiche 9-11, A-5 Reinitialisierung 3-29 Routinereinigung 7-11

S

Saugröhre (E-Lyte CCA Kassette) 1-8 Sensorkassette Beschreibung 1-8 Shutdown 3-37 Sicherheitseinstellungen 3-22 Sicherheitshinweise V, 2-1 Sicherheitsvorkehrungen 5-1 Signalton einstellen 3-36 SO2 THB/SO2-1 Sprache einstellen 3-34 Spritzen 5-2 Spritzenadapter Beschreibung 1-8 SRC-Diagnostikprotokolle 6-8 SRC-Messprotokolle 6-3 SRC-Sperre 3-5

SRC-Statistikprotokolle 6-4
Standardreferenzkassette (SRC) 1-9 Messung 4-4
Standby-Mode 3-37
Statistikprotokolle drucken 6-1
Statusanzeige Beschreibung 1-4
Stoppmeldungen 8-13
Stromversorgung Netzteil A-6
Symbole Beschreibung VII
Systemeinstellungen 3-1
System-Manager 2-10
Systemschutz 3-22
Systemtemperaturen überprüfen 8-20

Т

Tastbildschirm überprüfen 8-30 Technische Spezifikationen A-1 Temperaturkorrigierte Werte A-4 Testbedingungen 5-4, 9-6 Testprofil 5-6 Testprofile 3-12 tHb-Kalibrierung 7-2 Thermodrucker Beschreibung 1-5 Touch Screen Beschreibung 1-4 prüfen 8-30 Tragegriff 1-7 Typen- und Seriennummern 1-6

U

Überspannungskategorie A-6 Umrechnungstabelle A-8 USB-Massenspeicher 3-40

V

Verbrauchsmaterialien 10-1 Verfahren 9-5 Verschmutzungsgrad A-1 Versionen überprüfen 8-19 Vollblutproben 5-4

W

Warnmeldungen 8-1 Wartung Bedarfs- 7-9 jährlich 7-6 täglich 7-1 vierteljährlich 7-2 wöchentlich 7-1 Wartungseinstellungen 3-43 Wartungsprotokoll D-6 Wartungsprotokolle 6-11 Wartungstabelle C-1 Wechselmedien 3-38

Z

Zeit- und Datumseinstellung 3-1 Zubehör 9-14, 10-1